CRYPTO GRAPHY ky key m -> m KB ky . m 0 attacker Im m message M goal: only AB read the message ONE WAY FUNCTIONS f: Domain - Codomain · Domain to be large · f(x) can be efficiently computed · for "virtually all" y in range f HARD = comp. infeasible to compute x : f(x)=y · 7 INJECTIVE KEY SPACE ~) } En: KEK] sit of one way functions Ek: MK ~ D Cn message space cyphen text space m Ś we want the receiver of the cyphered text to be able to recover in using extra info Mr $\underline{ex}(1) RSA \quad E_{k}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}$ k=(e,n) $x \longrightarrow x^{e} \mod n$

usually a product of two brage primes $1 cec \phi(n)$ EK IS ONE WAY FUNCTION REPETED SQUARING efficient way to compute xe mod n (SQUARE & Jupposed MULTIPLY) But is very HARD to solve given de and e find x (2) problems in lattice theory (3) Discrete Log Problem (DLP) given d, y E Zn find x : x = y mod n or show that x does not exist here E(n,a): Zn -> Zn x 1 a mod n x = log x DISCRETE LOG PROBLEM (G, ·) Given a cyclic group G = < g > (eveny el. b E G can be written as g^e = b fon Some e E Z) pb: given he G find x: h=gx

Rmk: Whether DLP is hard depends on the group G
ex 1: G = (
$$\mathbb{Z}_{101}$$
, +)
find x: $3 \cdot x \equiv 37$ mod 101
linear Diophantim eq.
(- find inverse of 3 mod 37 ~ 34
multiply by 37 ~ ~ 0 4G
3.4G = 138 \equiv 39 mod 101
in (\mathbb{Z}_{101} +) DLP is easy
ex 2: G = ($\mathbb{Z}_{101}^{\times}$, ·) group of order 100=2⁵.5²
 $3^{\times} \equiv 37$ mod 101 $\times = 24$
 $3^{\times} \equiv 37$ mod 101 $\times = 24$
 $3^{\times} \equiv 37$ mod 101
we have algorithms to reduce the pb to
DLP in simeller groups
usually pred \mathbb{Z}_{p}^{\times} st. p-1 is riot a product
of powers of small primes
Rmk : DLP as factoring, is an example of
one way function but we don't have
a proof that Any one way function exist!
APPLICATIONS TO CRYPTO ALGORITHHS
 $(3 \cdot key exclange DHFTE - HEWTAN)$

2 El-Gamal
3 Signature
A B m p m p m Dub h_g on m onm on _
DIFFIE- HELL NAN NEY EXCHANGE pb: 2 parties have to agree on a
Gemmon public key in a non secure chennel STEP 1: A, B publicly agree on prime g primitive root of Zpx (SECURE)
STEP 2: A secretely chooses exponent q SENDS g ^q to B
STEP 3: B scretely chooses exponent b SENDS gb to A

 $q^{ab} = (q^b)^{\mathfrak{e}} = (q^a)^b$ PUBLIC KEY : PRIVATE Negs: a for A b for B SECURITY: attacker E wants to find privale key has to solve DCP given gå gå gåb fud a or b TODAY: ENCRYPTION SYSTEM After DH A, B have PUBLIC INFO: p prive, g generator Zpx PUBLIC shared key: gab PUBLIC keys: A: g^a B: g^b PRIVATE Keys: A: a B: b ElGramal cryptosystem: exchange scanly a message B wants to send a message M to A Assume: M encoded as an integer M < p STEP1: B encrypt M as a pair (g g g M) and sunds it to A g g H STEP 2: A decrypt the message (x, B) as follows $\beta \cdot \alpha^{-\alpha} = g^{ab} M \cdot (g^{b})^{-\alpha} = g^{ab} \cdot M \cdot g^{-ab} = M$

M message 66 (= ASCII code for letter B) B sinds A (2, 94, 66) = (28, 9) $g^{b} (g^{a})^{b} g^{ab} M$ $g_{4} \cdot 66 = g \mod 107$ $\propto P$ A reads (28, 9) and computes 7/- 107 $\beta \cdot \alpha^{-\alpha} = 9 \cdot 28^{-67} = 9 \cdot 28 = 9 \cdot 43 = 66$ (mod 107) A recovers M=66 / Implementation: usually to encode M one uses a HASH FUNCTION H: string -> Zp (bbchs of) ELGANAL SIGNATURE ALGORITHM Goal: attach data to a message M (signature) So that the receive Can verify the indentity of sender PUBLIC DATA : p prive g generasor of Zp A: public ken g^a secret heg a B : Assume message M is encoded as integer MCp

STEP 1: B choose remains k
$$e + 2, ..., p - 2^{1}$$

with $g_{id}(k, p - i) = 1$
and computes
 $S = (M - b g^{k}) \cdot k^{-1} \mod p - i$
(if $S = 0$ (unlikely) choose different k)
STEP 2: sends to A pair $(g^{k}, s) = (r, s)$
STEP 3: to verify identity of B
A has to verify that (A already has
 M
 $g^{M} = g^{b,r} r^{s}$
 $g^{M} = g^{b,r} r^{s}$
 $r^{s} = (g^{k})^{s} = g^{k}(H - b g^{k}) \cdot k^{-1} = g^{H - b \cdot g^{k}} = g^{H - b \cdot g^{k}}$
 $g^{b,r} r^{s} = g^{b,r} \cdot g^{H - br} = g^{M}$
SECURITY: to produce signature s
one needs B private key (DIP)
 $S = (H - b \cdot g^{k}) \cdot k^{-1}$

example: $p = 1$ $q = 2$
B: public key: 2=3 privale key b=8
message M = 5
signature : Choox vandon K = 9
6k since gcd(9, 11-1) = gcd(9, 10) = 1
$compute S = (14 - bg^{n})k^{-1} \mod p - 1 = 10$
$r = q^{\mu} = 2^{9} = 6 \mod 1$
$S = (5 - 8.6) k^{-1}$
95 = (5-8.6) = 7 med 10
solve 9.5=7 mod 10 ex: 5=3
signature (r,s) = (6,3)
verification: $g^{br} \cdot r^s = 2^{4\delta} \cdot 6^s \equiv 2^s \mod 11^{1/2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$