Number Theory - Exercises 1

Lea Terracini

1. Find $\operatorname{gcd}(272,1479), \operatorname{lcm}(272,1479)$ and compute Bézout identity.
2. Prove that, if a and b are relatively prime, then

$$
\begin{aligned}
& \operatorname{gcd}(a+b, a-b)=1 \text { or } 2 \\
& \operatorname{gcd}(2 a+b, a+2 b)=1 \text { or } 3, \\
& \operatorname{gcd}\left(a+b, a^{2}+b^{2}\right)=1 \text { or } 2 .
\end{aligned}
$$

3. Write 100 as a sum of two positive integers which are multiple of 7 and 11 respectively.
4. Compute

$$
\begin{aligned}
& 75+22 \quad \bmod 87 \\
& 56 \cdot 12 \quad \bmod 87 \\
& 160^{-1} \quad \bmod 841
\end{aligned}
$$

5. Solve the following system of congruences

$$
\begin{cases}x \equiv 4 & \bmod 11 \\ x \equiv 5 & \bmod 13 \\ x \equiv 1 & \bmod 15\end{cases}
$$

6. Compute $\varphi(1000)$.
7. Prove that for any odd integer a

$$
a^{33} \equiv a \quad \bmod 4080
$$

(Notice that $4080=15 \cdot 16 \cdot 17)$.
8. Show that if $\operatorname{gcd}(m, n)=1$ then

$$
m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \quad \bmod m n
$$

9. Say if the congruences

$$
34 x \equiv 6 \quad \bmod 38 ; \quad 34 x \equiv 7 \quad \bmod 38
$$

admit solutions; if they are, solve them.
10. Say if $\overline{7}$ lies in \mathbb{Z}_{32}^{\times}; in this case determine its order ${ }^{1}$.
11. Let $N=7919$ and let it be known that N is prime. Compute

$$
2^{15839}+N^{11} \bmod 3 N
$$

[^0]12. Let
$$
N=1147, \quad M=5
$$
a) Compute the greatest common divisor of N and 1000 and write the Bézout identity.
b) Find the canonical representatives of the following remainder classes:
$$
[N-1]_{M}, \quad[1000]_{N}^{-1}, \quad\left[M^{10}-7\right]_{M}
$$
c) Let it be known that M is the order ${ }^{2}$ of $[1000]_{N}$ in \mathbb{Z}_{N}^{\times}.

Is it true that $1000^{N-1} \equiv 1(\bmod N)$?
Deduce from your answer that N is not prime (without factoring N).

[^1]
[^0]: ${ }^{1}$ Recall that the order of an element g in a finite group G is the smallest $n>0$ such that $g^{n}=e$, where e is the identity element in G

[^1]: ${ }^{2}$ Recall that the order of an element g in a finite group G is the smallest $n>0$ such that $g^{n}=e$, where e is the identity element in G

