Number Theory - Exercises 2
 (for the Working Session of Thursday, March 7)

Lea Terracini

1. . Consider an RSA cryptosystem with $p=17, q=13$ (hence, $n=p q=221$), and $e=35$.
a) What is the value of d ?
b) Let (e, n) be the public key of Alice. If we use it to encrypt a message $m=78$, what is the ciphertext C that Bob send to her?
c) Let d be the private key of Alice. If she receives a ciphertext $C=65$, what is the original message m ?
2. A decryption exponent for an RSA public key (n, e) is an integer d with the property that $a^{d e} \equiv a(\bmod n)$ for all integers a with $\operatorname{gcd}(a, n)=1$. Let $n=99407207$. Assume that an oracle tells you the that

- when $e=10988423$ the decryption exponent is $d=26744567$;
- when $e=25910153$ the decryption exponent is $d=43278905$;
- when $e=2635$ the decryption exponent is $d=52767379$.

Use this information to factor n.
3. Prove that $\varphi\left(2^{n}-1\right)$ is divisible by n for every $n>1$.
4. Determine all the primitive roots of $11,19,23$.
5.
a) Find all elements in \mathbb{Z}_{61}^{\times}having order 4 .
b) Find all elements in \mathbb{Z}_{35}^{\times}having order 4 .
6. Let p_{n} be the n-th prime number. Establish each of the following statements:
a) $p_{n} \geq 2 n-1$ for $n \geq 5$.
c) The sum

$$
\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}
$$

is not an integer number for $n \geq 1$.
7.
a) Let p be a prime ≥ 5. Show that $p \equiv \pm 1 \bmod 6$.
b) Use Euclid argument to show that there are infinitely many primes congruent to -1 modulo 6.
8.
a) Show that 5 is a primitive root modulo 17 .
b) Find a primitive root modulo $17^{2}=289$.
9. Let $q=11^{3}$. How many 84 -th roots of unity are there in the finite field \mathbb{F}_{q} ?
10. Find the Legendre symbol $\left(\frac{91}{167}\right)$ using the quadratic reciprocity law.

