Exercises for the course: Introduction to elliptic curves
 AESIM school on

Algebra, Number theory and their applications to Cryptography Salahaddin University, Erbil, Kurdistan Region, Iraq
 25/02/2024-7/03/2024

Exercise 1. Legendre equation
(a) Let K be a field with characteristic different from 2. Let

$$
E: y^{2}=x^{3}+a x^{2}+b x+c=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) .
$$

Consider the following change of coordinates

$$
\left\{\begin{array}{l}
w=\frac{x-e_{1}}{\left(e_{2}-e_{1}\right)} \\
z=\frac{y}{\left(e_{2}-e_{1}\right)^{3 / 2}}
\end{array}\right.
$$

and set

$$
\lambda=\frac{e_{3}-e_{1}}{\left(e_{2}-e_{1}\right)} .
$$

Prove that $\lambda \neq 0,1$ and that the equation for E in the new coordinates is

$$
z^{2}=w(w-1)(w-\lambda)
$$

(b) For each $\sigma \in S_{3}$ express

$$
\lambda_{\sigma}=\frac{e_{\sigma(3)}-e_{\sigma(1)}}{e_{\sigma(2)}-e_{\sigma(1)}}
$$

in terms of λ.
(c) Put the Legendre equation $y^{2}=x(x-1)(x-\lambda)$ into Weierstrass form and use this to show that the j-invariant is

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

(d) Show that if $j \neq 0,1728$ then there are six distinct values of λ giving this j, and that if λ is one such value then the full set is

$$
\left\{\lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda}\right\} .
$$

(e) Show that if $j=1728$ then $\lambda=-1,2,1 / 2$, and if $j=0$ then λ is a root of $t^{2}-t+1=0$.

