HW2

June 4, 2024

0.1 Codes

There are ready made commands for coding theory, including: * constructions of "famous" codes, e.g., Hamming codes and Golay codes * minimum distance * generator and parity check matrix * "famous" bounds such as the sphere packing bound
We illustrate the commands with Hamming codes. q-ary Hamming codes have parameters $n=$ $\left(q^{r}-1\right) /(q-1)$, dimension $n-r$ and minimal distance 3 .
[1]:

```
C1 = codes.HammingCode(GF(4), 2)
C1
```

[1]: $[5,3]$ Hamming Code over GF (4)
[2]: (4~2-1)/(4-1), C1.minimum_distance()
$[2]:(5,3)$
[3]: C1.generator_matrix()
[3] : $\begin{array}{rlllrr}{[} & 1 & 0 & 0 & z 2+1 & z 2] \\ {[} & 0 & 1 & 0 & 1 & 1] \\ {[} & 0 & 0 & 1 & z 2 & z 2+1]\end{array}$

This is the "famous" binary Hamming code, note that columns represent all possible binary vectors apart 0 .
[4]:

```
C2 = codes.HammingCode(GF(2), 3)
C2.parity_check_matrix()
```

[4]: $\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

This is the sphere packing bound. So C_{1} contains 4^{3} codewords and is perfect. Also C_{2} contains 2^{4} codewords and is perfect.
[5](((64,64))) :

```
# parameters: n,q,d
codes.bounds.hamming_upper_bound(5,4,3), 4^3
```

[6]:

```
# parameters: n,q,d
codes.bounds.hamming_upper_bound(7,2,3), 2^4
```

$[6]:(16,16)$

0.2 Exercise

The goal of this exercise is to construct a generator matrix for the binary Golay [23.12] code. This is based on Example 5.9.1 in the notes. We suggest the following steps: * check that 2 has horder 11 modulo $23, *$ factorize $X^{23}-1$ over \mathbb{F}_{2}, * compute the multiplicative subset I of $(\mathbb{Z} / 23 \mathbb{Z})^{\times}$ generated by $2,^{*}$ construct an extension of \mathbb{F}_{2} to find a primitive 23 rd root of unity, ${ }^{*}$ using I as defining set, find a generator polynomial ${ }^{*}$ use the generator polynomial to obtain a generator matrix.

Once done, one could further: * put this matrix in systematic form ${ }^{*}$ compute the minimum distance $*$ check the code is perfect.

Exercise 73 in the notes: Check that 2 has order 11 modulo 23 and that $X^{23}-1$ over \mathbb{F}_{2} is the product of three irreducible polynomials.
[7]: for i in range (1,12): print(i, (2~i) \% 23)

12
24
38
416
59
618
713
83
96
1012
111
[8] :
R. $\langle x\rangle=$ PolynomialRing (GF (2))
factor (x (23)-1)
[8]: $(x+1) *\left(x^{\wedge} 11+x^{\wedge} 9+x^{\wedge} 7+x^{\wedge} 6+x^{\wedge} 5+x+1\right) *\left(x^{\wedge} 11+x^{\wedge} 10+x^{\wedge} 6+x^{\wedge} 5+\right.$
$\left.x^{\wedge} 4+x^{\wedge} 2+1\right)$

Example 5.9 .1 in the notes. Compute the multiplicative subset I of $(\mathbb{Z} / 23 \mathbb{Z})^{\times}$generated by 2 .
[9] :

```
I = []
for i in range(1,12):
    I . append((2^i)%23)
sorted(I)
```

$[9]:[1,2,3,4,6,8,9,12,13,16,18]$
Construct an extension of \mathbb{F}_{2} to find a primitive 23rd root of unity.
[10]: [(2^t-1)\%23 for t in range(1,15)], (2^11-1)/23
[10]: $([1,3,7,15,8,17,12,2,5,11,0,1,3,7], 89)$
[11]:

```
F2_11.<a> = GF(2^11, modulus="primitive")
b = a^89
g = 1
for i in I:
        g = g*(x-b`i)
g
```

[11]: $x^{\wedge} 11+x^{\wedge} 9+x^{\wedge} 7+x^{\wedge} 6+x^{\wedge} 5+x+1$

Construct a generator matrix for the polynomial of degree 11 computed above.
[12]:

```
rw1 = list (x^11 + x^9 + x^7 + x^6 + x^5 + x + 1)
```

rw1
[12]: [1, 1, 0, $0,0,1,1,1,0,1,0,1]$
[13]:

```
rw1 = rw1 + [0]*(23-len(rw1))
```

rw1
[13]:
[14]:

```
def cyclicshift(1):
```

 ','
 input: list
 output: a cyclic shift by 1 to the right
 , ,
 \(11=[1[-1]]\)
 11 += 1[0:-1]
 return 11
 [15]:

```
rws = [rw1]
rw = rw1
for i in range(11):
    nxtrow = cyclicshift(rw)
    rws.append(nxtrow)
    rw = nxtrow
G1 = matrix(GF(2),rws)
G1
```

 $\left[\begin{array}{llllllllllllllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 00000\right]$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array} 0 \quad 0\right]$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0\end{array}\right]$ $[0000000000000011000011100101]$

Put the generator matrix in systematic form.
[16]:

```
G1.echelon_form()
```

 $\left[\begin{array}{lllllllllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array} 0\right.$ $\left[\begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right]$ $\left[\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$ $\left[\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array} 0\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array} 1\right.$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1\end{array}\right]$ $\left[\begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array} 1\right]$ $\left[\begin{array}{lllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1\end{array}\right]$ $\left[\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1\end{array} 1111\right]$ [0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1]

Compute the minimum distance.

[17]: LinearCode(G1)

[17]: [23, 12] linear code over GF(2)
[18]:

```
LinearCode(G1).minimum_distance()
```


[18]: 7

Check that the code is perfect.
[19](((4096,4096))):

```
# parameters: n,q,d
codes.bounds.hamming_upper_bound(23,2,7), 2^12
```

