
HW2

June 4, 2024

0.1 Codes
There are ready made commands for coding theory, including: * constructions of “famous” codes,
e.g., Hamming codes and Golay codes * minimum distance * generator and parity check matrix *
“famous” bounds such as the sphere packing bound

We illustrate the commands with Hamming codes. 𝑞-ary Hamming codes have parameters 𝑛 =
(𝑞𝑟 − 1)/(𝑞 − 1), dimension 𝑛 − 𝑟 and minimal distance 3.

[1]: C1 = codes.HammingCode(GF(4), 2)
C1

[1]: [5, 3] Hamming Code over GF(4)

[2]: (4^2-1)/(4-1), C1.minimum_distance()

[2]: (5, 3)

[3]: C1.generator_matrix()

[3]: [1 0 0 z2 + 1 z2]
[0 1 0 1 1]
[0 0 1 z2 z2 + 1]

This is the “famous” binary Hamming code, note that columns represent all possible binary vectors
apart 0.

[4]: C2 = codes.HammingCode(GF(2), 3)
C2.parity_check_matrix()

[4]: [1 0 1 0 1 0 1]
[0 1 1 0 0 1 1]
[0 0 0 1 1 1 1]

This is the sphere packing bound. So 𝐶1 contains 43 codewords and is perfect. Also 𝐶2 contains
24 codewords and is perfect.

[5]: # parameters: n,q,d
codes.bounds.hamming_upper_bound(5,4,3), 4^3

1

[5]: (64, 64)

[6]: # parameters: n,q,d
codes.bounds.hamming_upper_bound(7,2,3), 2^4

[6]: (16, 16)

0.2 Exercise
The goal of this exercise is to construct a generator matrix for the binary Golay [23.12] code. This
is based on Example 5.9.1 in the notes. We suggest the following steps: * check that 2 has horder
11 modulo 23, * factorize 𝑋23 − 1 over 𝔽2, * compute the multiplicative subset 𝐼 of (ℤ/23ℤ)×

generated by 2, * construct an extension of 𝔽2 to find a primitive 23rd root of unity, * using 𝐼
as defining set, find a generator polynomial * use the generator polynomial to obtain a generator
matrix.

Once done, one could further: * put this matrix in systematic form * compute the minimum
distance * check the code is perfect.

Exercise 73 in the notes: Check that 2 has order 11 modulo 23 and that 𝑋23 − 1 over 𝔽2 is the
product of three irreducible polynomials.

[7]: for i in range(1,12):
print(i,(2^i)%23)

1 2
2 4
3 8
4 16
5 9
6 18
7 13
8 3
9 6
10 12
11 1

[8]: R.<x> = PolynomialRing(GF(2))
factor(x^(23)-1)

[8]: (x + 1) * (x^11 + x^9 + x^7 + x^6 + x^5 + x + 1) * (x^11 + x^10 + x^6 + x^5 +
x^4 + x^2 + 1)

Example 5.9.1 in the notes. Compute the multiplicative subset 𝐼 of (ℤ/23ℤ)× generated by 2.

[9]: I = []
for i in range(1,12):

I.append((2^i)%23)
sorted(I)

2

[9]: [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]

Construct an extension of 𝔽2 to find a primitive 23rd root of unity.

[10]: [(2^t-1)%23 for t in range(1,15)], (2^11-1)/23

[10]: ([1, 3, 7, 15, 8, 17, 12, 2, 5, 11, 0, 1, 3, 7], 89)

[11]: F2_11.<a> = GF(2^11, modulus="primitive")
b = a^89
g = 1
for i in I:

g = g*(x-b^i)
g

[11]: x^11 + x^9 + x^7 + x^6 + x^5 + x + 1

Construct a generator matrix for the polynomial of degree 11 computed above.

[12]: rw1 = list(x^11 + x^9 + x^7 + x^6 + x^5 + x + 1)
rw1

[12]: [1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1]

[13]: rw1 = rw1 + [0]*(23-len(rw1))
rw1

[13]: [1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[14]: def cyclicshift(l):
'''

input: list
output: a cyclic shift by 1 to the right

'''
ll = [l[-1]]
ll += l[0:-1]

return ll

[15]: rws = [rw1]
rw = rw1
for i in range(11):

nxtrow = cyclicshift(rw)
rws.append(nxtrow)
rw = nxtrow

G1 = matrix(GF(2),rws)
G1

3

[15]: [1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1]

Put the generator matrix in systematic form.

[16]: G1.echelon_form()

[16]: [1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1]
[0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1]
[0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1]

Compute the minimum distance.

[17]: LinearCode(G1)

[17]: [23, 12] linear code over GF(2)

[18]: LinearCode(G1).minimum_distance()

[18]: 7

Check that the code is perfect.

[19]: # parameters: n,q,d
codes.bounds.hamming_upper_bound(23,2,7), 2^12

[19]: (4096, 4096)

4

	Codes
	Exercise

