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Lattices in C and complex tori
Let Λ ⊂ C be a lattice and consider the associated complex tori defined as
C/Λ. Recall that the Weierstrass ℘-function defined as

℘
Λ
(z) =

1

z2
+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)

gives rise, together with its derivative, to a map to the projective plane:

Φ : C/Λ −→ P2(C)

z 7−→ [℘
Λ
(z) : ℘′

Λ
(z) : 1]

whose image is an elliptic curve, that we will denote by EΛ, which has
Weierstrass equation

y2 = 4x3 + g2(Λ)x + g3(Λ)

The uniformization theorem tells us that every elliptic curve over C arises
in this way.
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Why C/Λ is called a torus?
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Why C/Λ is called a torus?

The name comes from architecture

in architecture a torus is a particular roman moulding at the base of doric
style column.
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Why C/Λ is called a torus?

The name comes from architecture

in architecture a torus is a particular roman moulding at the base of doric
style column.
The latin word torus had several other meanings including rope, swelling,
pillow, bed, coffin and lover.

Valerio Talamanca (Roma Tre & RNTA) July, 2023 5 / 50



Holomorphic maps of complex tori

Question

What about maps?
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Holomorphic maps of complex tori

Question

What about maps?

If α is such that αΛ1 ⊆ Λ2, then we can define a surjective map
φα : C/Λ1 → C/Λ2, by setting

φα([z ]Λ1) = [αz ]Λ2 .

It can be shown that this is a holomorphic map.
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Holomorphic maps of complex tori

Question

What about maps?

If α is such that αΛ1 ⊆ Λ2, then we can define a surjective map
φα : C/Λ1 → C/Λ2, by setting

φα([z ]Λ1) = [αz ]Λ2 .

Consider

{α∈C : αΛ1 ⊆ Λ2} →
{

C
Λ1

φ−→ C
Λ2

: φ(0) = 0 and φ holomorphic

}
α 7→ φα

Theorem

Let Λ1 and Λ2 be two lattices. Then the above association is a bijection.
Moreover C/Λ1 and C/Λ2 are isomorphic if and only if Λ1 and Λ2 are
homothetic.
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Endomorphisms of elliptic curves over C

In particular we get that given a lattice Λ and its associated elliptic curve
EΛ, the endomorphism ring of EΛ is isomorphic to

{α∈C : αΛ ⊂ Λ} = RΛ

Note that we immediately recover the fact that End(EΛ) contains Z.
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Endomorphisms of elliptic curves over C

In particular we get that given a lattice Λ and its associated elliptic curve
EΛ, the endomorphism ring of EΛ is isomorphic to the following

{α∈C : αΛ ⊂ Λ} = RΛ

Note that we immediately recover the fact that End(EΛ) contains Z.
Moreover given α∈RΛ we fix [α] : EΛ → EΛ, by requiring that the following
diagram is commutative

C/Λ
φα−−−−→ C/ΛyΦ

yΦ

EΛ
[α]−−−−→ EΛ
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Complex multiplication

Definition

Let E/C be an elliptic curve. We say that E as complex multiplication
(CM for short) if End(E ) is strictly bigger than Z.
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Complex multiplication

Definition

Let E/C be an elliptic curve. We say that E as complex multiplication
(CM for short) if End(E ) is strictly bigger than Z.

Example

Let E be the elliptic curve y2 = x3 + x, then the map (x , y) 7→ (−x , iy)
induces an endomorphism φ of E . Clearly φ has order 4, and so End(E ) is
bigger than Z and hence E has complex multiplication.
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Complex multiplication

Definition

Let E/C be an elliptic curve. We say that E as complex multiplication
(CM for short) if End(E ) is strictly bigger than Z.

Example

Let E be the elliptic curve having Weierstrass equation y2 = x3 + x, then
the map (x , y) 7→ (−x , iy) induces an endomorphism φ of E . Clearly φ has
order 4, and so End(E ) is bigger than Z and hence E has complex
multiplication.

Example

Let E be the elliptic curve having Weierstrass equation y2 = x3 + 1, and
let ρ be a primitive cubic root of unity. Then the map (x , y) 7→ (ρx , y)
induces an endomorphism φ of E . Clearly φ has order 3, and so E has
complex multiplication.
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Complex multiplication

Definition

Let E/C be an elliptic curve. We say that E as complex multiplication
(CM for short) if End(E ) is strictly bigger than Z.

So if E is a complex CM elliptic curve, then End(E )⊗Q is a quadratic
imaginary field, and End(E ) is an order in that field.
As a matter of notation if End(E ) ∼= O ⊂ C and K = O ⊗Q we will say
that E has complex multiplication by O, or that E has complex
multiplication by K .
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Complex multiplication

It is easier to treat the case of elliptic curves having complex multiplication
by the full ring of integers of K , (i.e. the maximal order), and so we will
restrict ourselves to that case.
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Complex multiplication

It is easier to treat the case of elliptic curves having complex multiplication
by the full ring of integers of K , (i.e. the maximal order), and so we will
restrict ourselves to that case.
But we do not miss much doing so as the next theorem shows:

Theorem

Suppose that E has complex multiplication by an order O ⊂ K. Then
there exists an elliptic curve E ′ isogenous to E and having complex
multiplication by OK .
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Construction of elliptic curves with complex multiplication

Question

Suppose we are given an imaginary quadratic field K, how do we construct
elliptic curves with complex multiplication by OK?
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Construction of elliptic curves with complex multiplication

Question

Suppose we are given an imaginary quadratic field K, how do we construct
elliptic curves with complex multiplication by OK?

Suppose a ⊂ OK is a fractional ideal. Then a ⊂ K ⊂ C is a lattice in C.
Consider Ea, then its endomorphism ring is given by

End(Ea) ∼= {α∈C : αa ⊂ a}
= {α∈K , : αa ⊂ a}

1 = OK

1Exercise: prove this equality
Valerio Talamanca (Roma Tre & RNTA) July, 2023 18 / 50



Construction of elliptic curves with complex multiplication

Question

Suppose we are given an imaginary quadratic field K, how do we construct
elliptic curves with complex multiplication by OK?

Suppose a ⊂ OK is a fractional ideal. Then a ⊂ K ⊂ C is a lattice in C.
Consider Ea, then its endomorphism ring is given by

End(Ea) ∼= {α∈C : αa ⊂ a}
= {α∈K , : αa ⊂ a}
= OK

Hence every fractional ideal a of K , gives rise to an elliptic curve Ea

having complex multiplication by K .
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Construction of elliptic curves with complex multiplication

Hence every fractional ideal a of K , gives rise to an elliptic curve Ea

having complex multiplication by K .
Recall that given two lattices Λ1 and Λ2, then EΛ1 and EΛ2 are isomorphic
if and only if Λ1 and Λ2 are homothetic.
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Construction of elliptic curves with complex multiplication

Hence every fractional ideal a of K , gives rise to an elliptic curve Ea

having complex multiplication by K .
Recall that given two lattices Λ1 and Λ2, then EΛ1 and EΛ2 are isomorphic
if and only if Λ1 and Λ2 are homothetic.
Let a denote the class of a in Cl(OK ), the class group of OK . Thus if
a = b (i.e. there exists c∈K such that ca = b) then Ea and Eb are
isomorphic. It follows that we have a map

Cl(OK )→ Ell(OK )

a 7→ Ea
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Construction of elliptic curves with complex multiplication

Hence every fractional ideal a of K , gives rise to an elliptic curve Ea

having complex multiplication by K .
Recall that given two lattices Λ1 and Λ2, then EΛ1 and EΛ2 are isomorphic
if and only if Λ1 and Λ2 are homothetic.
Thus if a and b are homothetic (i.e. ca = b) then Ea and Eb are
isomorphic. It follows that we have a map

Cl(OK )→ Ell(OK )

a 7→ Ea

Moreover it is injective: Ea
∼= Eb ⇐⇒ there exists c∈C such that a = cb.

But then c∈K and so a = b.
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Let Λ be a lattice such that EΛ has complex multiplication by OK . For any
a, we set:

aΛ = {α1λ1 + · · ·+ αrλr : αi∈a, λi∈Λ}
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Let Λ be a lattice such that EΛ has complex multiplication by OK . For any
a, we set:

aΛ = {α1λ1 + · · ·+ αrλr : αi∈a, λi∈Λ}

Proposition

Let Λ ⊂ C be a lattice. Assume that EΛ has complex multiplication by
OK , and let a and b be non zero fractional ideal of K. Then

aΛ is a lattice in C
EaΛ has complex multiplication by OK

EaΛ
∼= EbΛ if and only if a = b in Cl(OK ).
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Proposition

Let K be an imaginary quadratic number field, and OK its ring of integers.
The map

Cl(OK )× Ell(OK )→ Ell(OK )

(a,EΛ) 7→ a ∗ EΛ = Ea−1Λ

is a simply transitive action of Cl(OK ) on Ell(OK ). In particular

#Cl(OK ) = # Ell(OK )
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a-torsion points

Let E be an elliptic curve with complex multiplication by K . For any ideal
a of OK we set

E [a] = {P∈E : [α]P = 0 for all α∈a}

and we call it the group of a-torsion of E .

Valerio Talamanca (Roma Tre & RNTA) July, 2023 26 / 50



a-torsion points

Let E be an elliptic curve with complex multiplication by K . For any ideal
a of OK we set

E [a] = {P∈E : [α]P = 0 for all α∈a}

and we call it the group of a-torsion of E .

Question

Can we determine the isogeny of which E [a] is the kernel?
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Suppose that E = EΛ, as usual Λ a lattice in C, and fix an isomorphism
E (C) ∼= C/Λ. Since Λ ⊂ a−1Λ we have a natural isogeny C/Λ→ C/a−1Λ
and hence a natural isogeny E → a ∗ E = Ea−1Λ.
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

C/Λ[a] = {z∈C : αz = 0 for all α∈a}
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

(C/Λ)[a] = {z∈C : αz = 0 for all α∈a}
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

(C/Λ)[a] = {z∈C/Λ : αz = 0 for all α∈a}
= {z∈C : αz∈Λ}/Λ
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

(C/Λ)[a] = {z∈C/Λ : αz = 0 for all α∈a}
= {z∈C : αz∈Λ for all α∈a}/Λ

= {z∈C : za∈Λ}/Λ
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

(C/Λ)[a] = {z∈C/Λ : αz = 0 for all α∈a}
= {z∈C : αz∈Λ for all α∈a }/Λ

= {z∈C : za∈Λ}/Λ

= a−1Λ/Λ
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

Let’s first look on the complex tori side. Suppose that E = EΛ, as usual Λ
a lattice in C. Then

(C/Λ)[a] = {z∈C/Λ : αz = 0 for all α∈a}
= {z∈C : αz∈Λ for all α∈a }/Λ

= {z∈C : za∈Λ}/Λ

= a−1Λ/Λ

= ker
(
C/Λ

z 7→z−→ C/a−1Λ
)
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a-torsion points

Question

Can we determine the isogeny of which E [a] is the kernel?

So we have (C/Λ)[a] = ker
(
C/Λ

z 7→z−→ C/a−1Λ
)

. Fix an analytic

isomorphism from (C/Λ) to E (C). Then (C/Λ)[a] corresponds to E [a]

and ker
(
C/Λ

z 7→z−→ C/a−1Λ
)

corresponds to the kernel of the natural

isogeny from E to a ∗ E .
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a-torsion points

Theorem

Let E be an elliptic curve with complex multiplication by OK and a an
integral ideal of OK .

E [a] is the kernel of the natural isogeny E → a ∗ E
E [a] is a free OK/a-module of rank 1.
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a-torsion points

Theorem

Let E be an elliptic curve with complex multiplication by OK and a an
integral ideal of OK .

E [a] is the kernel of the natural isogeny E → a ∗ E
E [a] is a free OK/a-module of rank 1.

Corollary

Let E be an elliptic curve with complex multiplication by OK .

Let a be an integral ideal, then the natural isogeny E → a ∗ E has
degree NK

Q(a).

Let α∈OK , then the endomorphism [α]∈End(E ) has degree |NK
Q(α)|.
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From C to Q

Theorem

Let E be an elliptic curve with complex multiplication by OK , then j(E ) is
an algebraic number.
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From C to Q

Theorem

Let E be an elliptic curve with complex multiplication by OK , then j(E ) is
an algebraic number.

The proof is left as an exercise which means is in the exercise sheet.
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From C to Q

Theorem

Let E be an elliptic curve with complex multiplication by OK , then j(E ) is
an algebraic number.

The proof is left as an exercise which means is in the exercise sheet.
Hints:

Prove that if σ∈Aut(C) then End(Eσ) ∼= End(E ).

Prove that if σ∈Aut(C) then j(Eσ) = j(E )
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From C to Q

Theorem

Let E be an elliptic curve with complex multiplication by OK , then j(E ) is
an algebraic number.

The proof is left as an exercise which means is in the exercise sheet.
Hints:

Prove that if σ∈Aut(C) then End(Eσ) ∼= End(E ).

Prove that if σ∈Aut(C) then j(Eσ) = j(E )

You can freely use the following fact:

Fact

Let α∈C be such that the set {σ(α) : σ∈Aut(C)} is finite, the α is an
algebraic number.
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From C to Q

If F is any field set

EllF (OK ) =
{Elliptic curves E/F with End(E ) ∼= OK}

isomorphism over F
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From C to Q

If F is any field set

EllF (OK ) =
{Elliptic curves E/F with End(E ) ∼= OK}

isomorphism over F

Then if we fix an embedding of Q in to C we get a map

ι : EllQ(OK )→ Ell(OK )
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From C to Q
If F is any field set

EllF (OK ) =
{Elliptic curves E/F with End(E ) ∼= OK}

isomorphism over F

Then if we fix an embedding of Q in to C we get a map

ι : EllQ(OK )→ Ell(OK )

then one has that ι is a bijection. To prove it we need to recall the
following result about elliptic curves:

Theorem

Two elliptic curves E and E ′ over an algebraically closed field L are
isomorphic if and only they have the same j-invariant. Moreover if j0∈L,
then there exists an elliptic curve E0 defined over L(j0) such that
j(E0) = j0.
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Consider EllQ(OK ). On it we have an action of Gal(K/K ), sending E to
Eσ. Recall that we have a transitive action of Cl(OK ) so it must exists
a∈Cl(OK ) such that

a ∗ E = Eσ
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Consider EllQ(OK ). On it we have an action of Gal(K/K ), sending E to
Eσ. Recall that we have a transitive action of Cl(OK ) so it must exists
aE∈Cl(OK ) such that

aE ∗ E = Eσ

Now the amazing fact is that actually aE does not depends on E .
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Consider EllQ(OK ). On it we have an action of Gal(K/K ), sending E to
Eσ. Recall that we have a transitive action of Cl(OK ) so it must exists
aσ∈Cl(OK ) such that

aσ ∗ E = Eσ

Theorem

Let K/Q be an imaginary quadratic field. Then there exists a
homomorphism Ψ : Gal(K/K )→ Cl(OK ), uniquely determined by
requiring that Eσ = Ψ(σ) ∗ E for all σ∈Gal(K/K ) and all E∈EllQ(OK ).
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Theorem

Let E be an elliptic curve with complex multiplication by OK . Then

H = K (j(E )) is the Hilbert class field of K.

[K (j(E )) : K ] = #Cl(OK ) = # Gal(H/K ) = # Ell(OK )

Set #Cl(OK ) = hk and suppose that E1, . . .Ehk be a complete set of
representatives for Ell(OK ). Then j(E1), . . . j(Ehk ), is a complete set
of Gal(K/K ) conjugates for j(E )

For every non zero fractional ideal a of K we have:

j(E )[a,H/K ] = j(a ∗ E )

where [a,H/K ]∈Gal(H/K ) is the Artin symbol of a.
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