Problems Finite Fields, July 25, 2023

Problem 1. Show that for every $n \geq 1$ the equation

$$
\phi(x)=n!
$$

has a positive integer solution x.
Problem 2. Show that for every prime p and integer n the equation

$$
n \equiv x^{2}+y^{2} \quad(\bmod p)
$$

has an integer solution x, y.
Problem 3. Find the minimal polynomial $f(X)$ of $\sqrt{2}+\sqrt{3}$ over \mathbb{Z}. Show that there is no prime p such that $f(X)$ is irreducible modulo p.

Problem 4. (a) Let $n \geq 2$ be an integer. Denote by R the radical (maximal square free factor) of n, namely the product of the prime factors of n. Check

$$
\begin{equation*}
\phi_{n}(X)=\phi_{R}\left(X^{n / R}\right) . \tag{1}
\end{equation*}
$$

(b) Let p be a prime number and let m_{1} a positive integer prime to p. Set $m=p m_{1}$. Prove

$$
\Phi_{m_{1}}\left(X^{p}\right)=\Phi_{m}(X) \Phi_{m_{1}}(X) .
$$

(c) Let p be a prime number and m a positive integer multiple of p. Write $m=p^{r} m_{1}$ with $\operatorname{gcd}\left(p, m_{1}\right)=1$ and $r \geq 1$. Deduce from (a) and (b)

$$
\Phi_{m_{1}}\left(X^{p^{r}}\right)=\Phi_{m}(X) \Phi_{m_{1}}\left(X^{p^{r-1}}\right) .
$$

(d) For $r \geq 0$, p prime and m a multiple of p, check

$$
\Phi_{p^{r} m}(X)=\Phi_{m}\left(X^{p^{r}}\right) \text { and } \varphi\left(p^{r} m\right)=p^{r} \varphi(m) .
$$

Deduce

$$
\Phi_{p^{r}}(X)=X^{p^{r-1}(p-1)}+X^{p^{r-1}(p-2)}+\cdots+X^{p^{r-1}}+1=\Phi_{p}\left(X^{p^{r-1}}\right)
$$

when p is a prime and $r \geq 1$.
(e) Let n be a positive integer. Prove

$$
\begin{gathered}
\varphi(2 n)= \begin{cases}\varphi(n) & \text { if } n \text { is odd, }, \\
2 \varphi(n) & \text { if } n \text { is even, }\end{cases} \\
\Phi_{2 n}(X)= \begin{cases}-\Phi_{1}(-X) & \text { if } n=1, \\
\Phi_{n}(-X) & \text { if } n \text { is odd and } \geq 3, \\
\Phi_{n}\left(X^{2}\right) & \text { if } n \text { is even. } .\end{cases}
\end{gathered}
$$

Deduce, for $\ell \geq 1$ and for m odd ≥ 3,

$$
\begin{aligned}
& \Phi_{2^{\ell}}(X)=X^{2^{\ell-1}}+1 \\
& \Phi_{2^{\ell} m}(X)=\Phi_{m}\left(-X^{2^{\ell-1}}\right) \\
& \Phi_{m}(X) \Phi_{m}(-X)=\Phi_{m}\left(X^{2}\right) .
\end{aligned}
$$

(f) Check, for $n \geq 1$,

$$
\Phi_{n}(1)= \begin{cases}0 & \text { for } n=1 \\ p & \text { if } n=p^{r} \text { with } p \text { prime and } r \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

(g) Check, for $n \geq 1$,

$$
\Phi_{n}(-1)= \begin{cases}-2 & \text { for } n=1 \\ 1 & \text { if } n \text { is odd } \geq 3 \\ \Phi_{n / 2}(1) & \text { if } n \text { is even }\end{cases}
$$

In other terms, for $n \geq 3$,
$\Phi_{n}(-1)= \begin{cases}p & \text { if } n=2 p^{r} \text { with } p \text { a prime and } r \geq 1 ; \\ 1 & \text { if } n \text { is odd or if } n=2 m \text { where } m \text { has at least two distinct prime divisors. }\end{cases}$

