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1 Introduction

The beginning of the Number Theory is related to the problem of finding integer solutions to
algebraic equations F (x1, . . . , xn) = 0, where arise the algebraic numbers. For example, find
the integer solutions of the Pell equation x2 − d · y2 − 1 = 0, where d > 1 and square-free. If
we write x2 − d = (x −

√
d · y) · (x +

√
d · y), it is known that the integer solutions (m,n) of

this equation corresponds to the invertible elements m + n ·
√
d of the ring Z[

√
d] with norm

equals to 1. Something similar happens when we study the equation xp + yp − zp = 0, which
is a case of the Last Fermat Theorem. Here, the proper ring to be considered is Z[ζp] where ζp
is a p-th root of unity. From here, to see the importance to study the algebraic and arithmetic
properties of this kind of ring. Like a generalization of the integers, arise the concept of ring of
algebraic integers of a number field.

2 Number fields and ring of integers

Algebraic number theory studies the arithmetic aspects of the number fields. Such fields are
involved in the solution of many rational problems, such as the following diophantine problems.

Pell Equation Find integer numbers x, y such that x2 − dy2 − 1 = 0, with d > 1 squarefree.
Note that x2−dy2 = (x−

√
dy)(x+

√
dy), if we consider the ring Z[

√
d] = {a+ b

√
d : a, b ∈ Z}.

So, to solve this diophantine equation is equivalent to looking into Z[
√
d]∗.

Pythagorean triples :Find integers numbers without common factors x, y, z such that x2 +
y2 = z2.
Observe that x2 + y2 = (x+ yi)(x− iy) in Z[i]. ]It is known that Z[i] in a unique factorization
domain (exercise), so each element in Z[i] can be written uniquely (unless order and multiplica-
tion by units) as the product of irreducible elements. By using this fact, it is possible to prove
that x+ iy = uα2, with α, u ∈ Z[i] and u a unit (i.e u ∈ {±1,±i}.) (exercise).
If α = m+ ni, with m,n ∈ Z, then

x+ iy = ±(m+ ni)2 = ±(m2 + 2mni− n2),

i.e., x = ±(m2 − n2), y = ±2mn. Therefore, z2 = (m2 + n2)2 and z = ±(m2 + n2). m and n
must be relatively primes and not both odd.
A natural question is whether it is possible to apply this idea to solve the general case xn+yn =
zn, with n > 2.
Fermat 1 conjectured that there is no integer solution non zero for n > 2. To study this problem,

1Now it is known as the Last Fermat Theorem and was proved by Andrew Wiles in 94
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it is enough to consider the case n = p, with p an odd prime.
Suppose that for some odd prime p there is a solution x, y, z ∈ Z−{0} with no common factors.
Let us consider the following cases:

(a) p does not divide any x, y, z.

(b) p divides exactly one of them.

We will only see case (a).

• Suppose p = 3.If x, y, z are not multiples of 3, then x3, y3, z3 ≡ ±1 (mod 9) and x3+y3 ̸≡
z3 (mod 9), so it cannot have a non-trivial solution.

• Suppose p > 3. Then,

xp + yp = (x+ y)(x+ ζpy)(x+ ζ2py) · · · (x+ ζp−1
p y) = zp,

where ζp = e2πi/p in Z[ζp] = {ap−2ζ
p−2
p + . . . a1ζp + a0} (exercise). Kummer claimed that

Z[ζp] is a unique factorization domain and from here, he obtained a proof of the Fermat
Theorem. However, his assertion only is valid if p < 23. Idea: If we assume that Z[ζp] is
a UFD, it is possible to prove that x+ ζpy = uαp, for some α ∈ Z[ζp] and u ∈ Z[ζp]∗ and
also that if x, y are not divisible by p, then x ≡ y (mod p). Putting xp + (−z)p = (−y)p,
we obtain that x ≡ −z (mod p). This implies

2xp ≡ xp + yp ≡ zp ≡ −xp (mod p),

so p | 3xp, but p ̸= 3 and p do not divide x, which is a contradiction, and then there are
no solutions to the case (a).

More general case: Dedekind discovered that although the elements of Z[ζp] may not factor
uniquely in irreducibles, the ideals of this ring always factor in a product of prime ideals. From
here, it is possible to prove that the principal ideal generated by x + ζpy may be written as
(x+ ζpy) = Ip, for some I ideal.
There are certain primes p (regular primes) for which I may be a principal ideal I = (α), then

(x+ ζpy) = Ip = (α)p = (αp),

and again (x+ ζpy) = uαp, for u a unit. Then x ≡ y (mod) p, which is a contradiction. For a
historical approach to this concept, see [1].

2.1 Number Fields

Definition 2.1. A field K is an algebraic number field if is a finite extension of Q. Their
elements will be called algebraic numbers, that is, they are roots of nonzero polynomials with
rational coefficients. The monic polynomial Pα(x) of the lowest degree of which α ∈ K is a root
is called de minimal polynomial of α.

If α is root of g(x) ∈ Q[x] , then Pα(x)|g(x).

Example 1. Quadratic fields.
Quadratic fields are degree two extensions K of Q and then have the form Q(

√
d), where we can

assume that d is a square-free integer. If d < 0 we say that Q(
√
d) is an imaginary quadratic

field and of d > 0 a real quadratic field.
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Example 2. Cyclotomic fields.

Let n ≥ 1 and let ζn be a primitive n-th root of unity in C. The n-th cyclotomic field is the
field Q(ζn). The degree of this field over Q is ϕ(n), where ϕ is the Euler’s phi function.
The minimal polynomial of ζn over Q is called the cyclotomic polynomial Φn(x) and it verifies
the following:

(i) Let Un be the group of n-th roots of unity in C and let U ′
n = {ζan : 0 ≤ a < n, gcd(a, n) =

1}. Then

Φn(x) =
∏
ζ∈U ′

(x− ζ).

(ii) Φn(x) is a monic polynomial with integer coefficients and irreducible over Q. Its degree
is ϕ(n).

(ii)
∏

d|n Φd(x) = xn − 1.

2.2 Algebraic Integers

Definition 2.2. An element α in a number field will be called algebraic integer if there exists
a monic polynomial f(x) ∈ Z[x] such that f(α) = 0.

Example 3. 3
√
2,
√
2 + 2 are algebraic integers.

√
2
3 is algebraic, but it is not an algebraic

integer.

Theorem 2.1. Let α be an algebraic integer. Then, the minimal polynomial of α has integer
coefficients.

Proof. Let Pα(x) ∈ Q[x] the minimal polynomial of α and g(x) ∈ Z[x] with g(α) = 0. Then
g = Pαh, for some h(x) ∈ Q[x]. If Pα(x) /∈ Z[x], then there is a prime p dividing the denominator
of some coefficient of Pα. Let p

i be the biggest power of p with this property and pj the biggest
power dividing the coefficients of h. Then:

pi+jg = (piPα)(p
jh) ≡ 0 (mod p).

Since Z/pZ[x] is an integral domain, we obtain that piPα or pjh are zero mod p, which is a
contradiction.

From now, we will denote by OK the set of algebraic integers in the number field K.

Corollary 2.1. OQ = Z.

2.3 Characterization of Algebraic Integers

Theorem 2.2. The following assertions are equivalents:

(i) α is algebraic integer.

(ii) Z[α] = {f(α) : f(x) ∈ Z[x]} is a finitely generated Z-module.

(iii) There exists a finitely generated Z-module M such that αM ⊆ M and γM ̸= {0} for all
γ ∈ Z[α]− {0}.
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Proof. i) ⇒ ii) Let f(x) = xn+a1x+ . . . a0 ∈ Z[x] and f(α) = 0. Let us consider the following
Z-module: M = Z + Zα + . . .Zαn−1. It is clear that M ⊆ Z[α]. By induction: suppose that
αk ∈ M , then:

αn+k = αkαn

= αk[−(an−1α
n−1 + . . .+ a0]

= (−αkan−1)α
n−1 + . . .+ (−αka0).

Because −αkai ∈ Z[α] for i = 0, 1, . . . , n− 1, we have that αn+k ∈ M , therefore M = Z[α].
ii) ⇒ iii). We take M = Z[α]. As α ∈ M , then αM ⊆ M and γ = γ · 1 ∈ γM .
iii) ⇒ i). Let {x1, x2 . . . xr} be a generators of M . By hypothesis αxi ∈ M , then there exists
a set of integers numbers cij such that αxi =

∑r
j=1 cijxj , for all i = 1, . . . , r. Let C = (cij)ij ,

then

C ·


x1

.

.

.
xr

 = α ·


x1

.

.

.
xr

 ⇔ (C − αId)


x1

.

.

.
xr

 = 0.

There is at least one xi non zero, so det(C − αId) = 0 and then det(C − xId) ∈ Z[x].

Theorem 2.3. Let K be a number field. Then OK is a ring.

Proof. If α, β are algebraic integers, then Z[α] and Z[β] are a finitely generated as Z-modules.
From here, we have that M = Z[α, β] also is a finitely generated Z-module. Moreover, (α ±
β)M ⊆ M and (αβ)M ⊆ M , and then α±β and αβ belong to the set of algebraic integers.

2.4 Discriminant of Number Fields

Let K be a number field with [K : Q] = n and let σ1, . . . , σn be the complex embeddings of K.
For α1, . . . , αn ∈ K we define the discriminant of α1, . . . , αn by

DK(α1, . . . , αn) = det(σi(αj))
2. (2.1)

Theorem 2.4.
DK(α1, . . . , αn) = det(TK/Q(αiαj)).

Lemma 2.1. Let {γ1, . . . , γn} be a subset of K. If γi =

n∑
j=1

cijαj, with cij ∈ Q, then

DK(γ1, . . . , γn) = det(cij)
2DK(α1, . . . , αn).

Proof. The proof follows from the fact that γkγm =

n∑
i,j=1

ckicmjαiαj .

Theorem 2.5. DK(α1, . . . , αn) ̸= 0 if and only if the set {α1, . . . , αn} is linearly independent
over Q.

5



Proof. If {α1, . . . , αn} is linearly dependent over Q then the columns if the matrix (σi(αj))ij
are linearly dependent, so DK(α1, . . . , αn) = 0. Reciprocally, if DK(α1, . . . , αn) = 0 then the
columns of (TK/Q(αiαj))ij are lineraly dependent. Let us suppose that {α1, . . . , αn} is linearly
independent and fix rational numbers (not all zero) such that a1R1 + . . . + anRn = 0, where
Rℓ are the columns of (TK/Q(αiαj))ij and let α = a1α1 + . . .+ anαn ̸= 0. Looking at the j-th
coordinate of each row, we see that TK/Q(ααj) = 0 for all j. Note that {α1, α2, . . . , αn} is in
fact, a basis for K over Q and then {αα1, αα2, . . . , ααn} is a also a basis, then TK(β) = 0 for
all β ∈ K, which is a contradiction.

Theorem 2.6. Let K = Q(α), and α1, α2, . . . , αn the conjugated of α over Q. Then

DK(1, α, α2, . . . , αn−1) =
∏

1≤r<s≤n

(αr − αs)
2 = ±NK(f ′(α)),

where f is the minimal polynomial of α over Q and the sign is + if and only if n ≡ 0 or 1 (mod
4).

Proof. It is not difficult to prove that

DK(1, α, α2, . . . , αn−1) = det


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

... · · ·
...

...
1 αn α2

n · · · αn−1
n


2

=
∏

1≤r<s≤n

(αr − αs)
2.

By using that NK(f ′(α)) =
∏n

i=1 σi(f
′(α)), we prove the second equality.

2.5 Integral basis

Let K be a number field with [K : Q] = n. By using discriminant, we can prove that the ring
of integers OK of is a free abelian group of rank n, that is, isomorphic to Zn. It is known that
if A and C are free abelian groups of rank n, and A ⊆ B ⊆ C, then so is B. If α ∈ K, then
there exists an integer m ∈ Z such that mα is an algebraic integer. Then, we can find a basis
of K over Q, say {α1, . . . , αn}, contained in OK . So, the free abelian group of rank n given by
A = Zα1 + . . .+ Zαn is contained in OK .

Theorem 2.7. Let {α1, . . . , αn} be a basis for K over Q consisting entirely of algebraic integers,
and set D = DK(α1, . . . , αn). Then, every α ∈ OK can be expressed in the form

1

D
(m1α1 + . . .+mnαn)

with mj ∈ Z and m2
j are divisible by D.

It follows that OK is containded in the free abelian group B = Z
α1

D
+ . . .+

αn

D
, so we have

the following corollary:

Corollary 2.2. OK is a free abelian group of rank n.

It means that there exits β1, . . . , βn in OK such that every α ∈ OK has unique representation

m1β1 + . . .+mnβn,

where mi ∈ Z. The set {β1, . . . , βn} is called integral basis for OK .
Although the ring of integers has many integral basis, their discriminants are the same.
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Theorem 2.8. Let {β1, . . . , βn} and {α1, . . . , αn} be two integral bases for OK . Then

DK(β1, . . . , βn) = DK(α1, . . . , αn).

Proof. It is enough to apply Lemma (2.1).

Definition 2.3. Let K be a number field of degree n over Q. We define the discriminant of K
by

DK := DK(α1, . . . , αn),

where α1, . . . , αn is a integral basis of OK .

3 Some explicit computations

3.1 Ring of Integers of Quadratic Number Fields

Let us consider a quadratic number field K = Q(
√
d) with d a square-free integer. Let α =

a+b
√
d ∈ OK , then its conjugate α′ = a−b

√
d is also inOK . We have that α+α′ = 2a ∈ OK∩Q,

so 2a is in fact an integer and a =
a′

2
, with a′ ∈ Z. Note that α satisfies the following equation

over Q
0 = (x− α)(x− α′) = x2 − (α+ α′)x+ αα′,

where αα′ ∈ Z (because αα′ ∈ OK ∩Q). Moreover,

αα′ = a2 − b2d =

(
a′

2

)2

− b2d ∈ Z

and (a′)2 − 4b2d ∈ 4Z. Because a′ ∈ Z, 4b2d ∈ Z and so 4b2 ∈ Z due to d is square free. Now

it follows that 2b ∈ Z and so b =
b′

2
, with b′ ∈ Z. Now, we can see that α has the following

representation:

α =
a′

2
+

b′
√
d

2
.

Note that (
a′

2

)2

−
(
b′

2

)2

d = αα′ ∈ Z.

As d ̸≡ 0 (mod 4), we have that d ≡ 1, 2, 3 (mod 4). Additionally,

(a′)2 ≡ (b′)2d (mod 4),

therefore a′ and b′ have the same parity. This give us the following cases:

• If a′ and b′ are even, then α = ã+ b̃
√
d, with ã and b̃ ∈ Z.

• If a′ and b′ are odd, then (a′)2 ≡ (b′)2 ≡ 1 (mod) 4, so d ≡ 1 (mod 4).

Finally, we have proved the following proposition:

Proposition 3.1. If K = Q(
√
d) with d a square-free integer, then

OK =

{
Z[
√
d], if d ≡ 2, 3 (mod 4)

Z
[
1+

√
d

2

]
, if d ≡ 1 (mod 4)
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From the proposition it is clear that an integral basis, depending on d, is the following:{
{1,

√
d}, if d ≡ 2, 3 (mod 4)

{1, 1+
√
d

2 }, if d ≡ 1 (mod 4)

3.2 Ring of Integers and Discriminant of Cyclotomic Number Fields

Proposition 3.2. Let n = pl with p a prime number and ζ a primitive n-th root of unity in
C. Then {1, ζ, . . . , ζϕ(n)−1} is a Q- basis of K = Q(ζ) and

DK(1, ζ, . . . , ζϕ(n)−1) = ±rs, where s = pl−1(lp− l − 1).

Proof. The main steps are the following:

• Φn(x) =
xpl − 1

xpl−1 = xpl−1(l−1) + . . .+ x2pl−1

+ 1.

• From (2.6), DK(1, ζ, . . . , ζϕ(n)−1) = ±NK(ϕ′(ζ)).

• Φn(x) =
plζp

l−1

ζn/p
.

• NK(ϕ′(ζ)) =
NK(plζp

l−1

)

NK(ζn/p)
=

plϕ(n)NK(ζp
l−1

)

NK(ζn/p)
.

Proposition 3.3. Let n = p, with p a prime number, and let ζ be a n-th primitive root of
unity. If K = Q(ζ), then {1, ζ, ζ2, . . . , ζp−2} is and integral basis for OK .

Proof. The main steps are the following:

• Φp(x) =
xp − 1

x− 1
= xp + . . .+ x+ 1.

• From (2.6), DK(1, ζ, . . . , ζp−2) = ±
p−1∏
i=1

(ϕ′(ζi)).

• Φ(ζ
i) =

pζ−i

ζi − 1
.

• DK(1, ζ, . . . , ζp−2) = ±
p−1∏
i=1

pζ−i

ζi − 1
= ± pp−1

Φp(1)
= ±pp−2 ̸= 0.

• ζi are algebraic integers, so if {α1, . . . , αp−2} is an integral basis, then from (2.1),

DK(1, ζ, . . . , ζp−2) = c2DK(α1, . . . , αp−2),

where c is the determinant of the matrix C = (cij) where ζi =

p−2∑
j=1

cijαj . it verifies that

c = 1. Let us consider the following result:
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Let a1, . . . , an ∈ OK linearly independent over Q. Let N = Za1 + . . . + Zan and
m = [OK : N ]. Prove that DK(a1, . . . , an) = m2DK .

If we fix N = Z · 1 + Zζ2 . . . + Zζp−1, then [OK : N ] = 1, so 1, ζ, . . . , ζp−2 is an integral
basis.

Theorem 3.1. Let ζ be a n-th primitive root of unity. If K = Q(ζ), then {1, ζ, ζ2, . . . , ζϕ(n)}
is and integral basis for OK , i.e. OK = Z[ζ]. In particular, the discriminant of K is

DK =
(−1)ϕ(n)/2nϕ(n)∏

p|n p
ϕ(n)/p−1

.

4 Dedekind Domains

Definition 4.1. An integral domain R is a Dedekind domain if,

(i) Every ideal in R is finitely generated.

(ii) R in integrally closed in its field of fraction Q(R) = {α/β : α, β ∈ R, β ̸= 0}. It means
that if α/β is a root of some monic polynomial over R, then α/β ∈ R.

(iii) Every non zero prime ideal in R is a maximal ideal.

Theorem 4.1. Let K be a number field. OK is a Dedekind domain.

Proof. OK is a free abelian group of rank n , so if a is an ideal of OK , a is too, which proves (i).
It is possible to prove that if a ⊂ OK is a prime ideal, then OK/a is a finite integral domain,
so it is a field and then a is maximal.

Theorem 4.2. Let R be a Dedekind domain. Then every ideal a ̸= 0, R has a unique (unless
reordering) factorization in prime ideals:

a = p1p2 · · · pr.

5 Factorization in Ring of Integers

Note that there are primes of Z, which are not irreducible. For example,

5 = (2 + 1)(2− i), in Z[i].

Problem: Let K be a number field and p a prime in Z. Study the prime decomposition of

(p) = pOK .

Definition 5.1. We say that an ideal b lies over p (or divides p) if b appears in the prime
factorization of (p).

Note that if b lies over p, then p = b∩Z, and every prime ideal of OK lies over a unique prime
of Z.
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Definition 5.2. Suppose that
pOK = be11 be22 . . . berr ,

where b′is are primes of OK . The integers ei are called the ramification index of over p and

fi = [OK/bi : Z/pZ]

is called the inertial degree of bi over p.

Theorem 5.1. If K is a number field with [K : Q] = n, then

r∑
i=1

eifi = n.

If K is a number field, we know that OK is a Dedekind domain. Then, each ideal in OK

may be written as a product of prime ideals.
Problem: Find pi and ei:

K OK pOK = pe11 pe22 . . . perr

Q Z p

5.1 Factorization in Quadratic Fields

Let K = Q(
√
d), with d squarefree and OK = Z[α] with

α =

{ √
d, if d ≡ 2, 3 (mod 4)

1+
√
d

2 , if d ≡ 1 (mod 4)

If f is the minimal polynomial of α over Q, then

f(x) =

{
x2 − d, if d ≡ 2, 3 (mod 4)
x2 − x+ 1−d

4 , if d ≡ 1 (mod 4)

Remark 1. The following isomorphism holds canonically:

OK/pOK
∼= (Z[x]/(f(x)))/(pOK) ∼= Z[x]/(p, f(x)) ∼= Zp[x]/(f(x))

Let us see the possible factors of f(x) in Zp[x]:

• f(x) is irreducible.
This implies Zp[x]/(f(x)) is a field, then OK/pOK is also a field and so pOK is a prime
ideal.

For the remaining cases, observe that:

OK

��

// OK/pOK

��
Z/(f(x)) // Z[x]/(p, f(x)) // Zp[x]/(f(x))

10



• f(x) = g(x)h(x), with g(x) and h(x) distinct, monic and linear.
From the Chinese remainder theorem

Zp[x]/(f(x)) ∼= Zp[x]/(g(x))× Zp[x]/(h(x)).

Restricting to each factor we see that the kernel of the map

OK → Zp[x]/(g(x))× Zp[x]/(h(x)),

is in the first factor the ideal (p, g(α)) and in the second factor (p, h(α)). Then, the kernel
is (p, g(α)) ∩ (p, h(α)).

Remark 2. The ideals (p, g(α)) and (p, h(α)) are prime and relatively primes (i.e their
sum is the whole ring) and it holds that

(p, g(α) ∩ (p, h(α)) = (p, g(α)) · (p, h(α)).

(Exercise)

But from the diagram, the kernel of the map is in fact pOK , so the factorization of this
ideal is

pOK = (p, g(α)) · (p, h(α)).

• f(x) = g(x)2, with g(x) monic and irreducible.
First, we assume that p ̸= 2.

Remark 3. If d ≡ 2, 3 (mod 4), then f(x) = x2 − d is a square in Zp[x] if and only if
p|d.

In fact,
x2 − d ≡ (x+ a)2 (mod) p ⇔ (d(2x+ a+ d) ≡ 0 (mod) ⇔ p|d.

We take g(x) = x. Then the kernel of the map

OK → Zp[x]/(x
2)

is for one hand (p, g(α)) = (p, α2) and for the other hand is pOK . Then,

pOK = (p, α2) = (p, α)2.

It remains to see what happens when p = 2, but it will be left as an exercise.

We resume the previous results in the next proposition,

Proposition 5.1. Let K = Q(
√
d), with d squarefree and let f(x) be the minimal polynomial

of
√
d over Q. If p is a prime number, then the factorization in irreducible factors in Zp[x]

f(x) = g1(x)
e1g2(x)

e2 , with ei = 1 or 2

implies
pOK = (p, g1(α))

e1(p, g2(α))
e2 .

A more general result is the following:
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Theorem 5.2. Let K = Q(θ) with θ an algebraic integer. Let us suppose that p ∤ [OK : Z[θ]]
and let g(x) be the minimal polynomial of θ. If

f(x) ≡ g1(x)
e1g2(x)

e2 . . . gr(x)
er (mod p),

where gi are irreducible and distinct, then

pOK = pe11 pe22 . . . perr ,

where pi = (p, gi(θ)) are prime ideals, N(pi) = pfi and fi = deg(gi).

Remark 4. If OK = Z[θ], then the theorem holds for every prime (same if g(x) in Einsenstein
in p.)

Definition 5.3. Let p be a prime number and K a number field with [K : Q] = n. We
say that,

• p is totally ramified if pOK = pn, for some prime p.

• p is inert if pOK is prime.

• p splits completely if pOK = p1p2 . . . pn.
In general, we say that p ramifies in K if in the prime factorization in OK , some ei ≥ 2.

Corollary 5.1. Let θ be an algebraic integer such that its minimal polynomial is Einsenstein
in the prime p. If K = Q(θ), then p is totally ramified in OK .

Theorem 5.3. (Dedekind) A prime p ramifies in K if and only if p|DK .

Is it possible to prove the following special cases:

• If p ∤ [OK : Z[θ]], then p ramifies in OK if and only of p ∤ DK .

• If K = Q(θ) and OK = Z[θ], then if p|DK , then p ramifies in K. (Exercise)

5.2 Action of the Galois Group over primes

Theorem 5.4. Let K be a Galois extension over Q and p a prime number. Let p1, . . . , pr be
the primes in K over p. Then Gal(K/Q) acts transitively in this set, i.e., for all i, j, there
exists σ ∈ Gal(K/Q) such that σ(pi) = pj.

Proof. Note that σ(OK) = OK and if p is a prime over p, then σ(p) is also a prime ideal over
p. Let pi and pj different primes over p. Suppose that σ(pi) ̸= pj , for all σ ∈ Gal(K/Q). Both
ideals are maximal, so pj ⊊ pj . Let x ∈ pj but x /∈ σ(pi). Taking the norm

NK(x) =
∏
σ

σ(x) = x ·
∏

σ ̸= id

σ(x) ∈ pj .

For the other hand, NK(x) ∈ Z, then NK(x) ∈ pZ = Z ∩ pj = Z ∩ pi ⊂ pi. But NK(x) /∈ σ−1,
so we have a contradiction.

Corollary 5.2. Let K be a Galois extension over Q of degree n and let p be a prime over p.
Then, if pOK = be11 be22 . . . berr , then e1 = e2 . . . = er, f1 = f2 . . . = fr and erf = n.

12



6 Factorization in Cyclotomic Fields

Let m ≥ 1 and K = Q(ζm). Then OK = Z[ζm] and p a prime in Z. Then

Φm(x) ≡ (g1(x)g2(x) . . . gr(x))
e (mod p),

deg (gi(x))=f for all i and erf = ϕ(m). Suppose that p ∤ m. So, xm − 1 =
∏

d|m ϕd(x) has no

factors with multiplicity greater than one, in particular ϕm(x). Then e = 1.

• Suppose f = 1, then ϕm(x) has only linear factors in Zp[x].

Lemma 6.1. Let m be a positive integer and L be a field with char(L) ∤ m. If α ∈ L,
then ϕm(α) = 0 if and only if α is a primitive m-th root of unity.

Following the previous lemma, Zp has a primitive m-th root of unity. Z∗
p is a cyclic group

of order p−1, then its elements of order m are exactly those m|p−1. So, Z∗
p has elements

of order m if and only if p ≡ 1 (mod m).

Proposition 6.1. p splits completely in OK if and only p ∤ m and p ≡ 1 (mod m).

• f > 1. Let g(x) be an irreducible factor of Φm(x) in Zp[x] , with deg(g(x))=f . Let α be
a root of g(x) and F = Zp[α] ∼= Zp[x]/(g(x)). Then [F : Zp] = f and F has a primitive
m-th root of unity, so |F | = pf and F ∗ is cyclic with order pf − 1.

Proposition 6.2. f is the order of p in Z∗
p and there are ϕ(m)/f primes over p.

If p|m, then p ramifies.

Example 4. p in Q(ζp). From xp − 1 ≡ (x − 1)p (mod p) and Φp(x) = xp−1
x−1 , we have

Φp(x) ≡ (x− 1)p−1 (mod p), then

pOK = (p, ζp − 1)p−1,

that is, p is totally ramified.

6.1 Ideal Class Group

Definition 6.1. A fractional ideal a, is an OK-module contained in K such that there is m ∈ Z
such that ma ⊂ OK .

If p is a prime ideal, we define

p−1 = {x ∈ K : xp ⊆ OK}.

Theorem 6.1. If p is a prime ideal, then p−1 is a fractional ideal and p−1p = OK .

We have that JK , the set of fractional ideals of K is an abelian group. In fact, the neutral
element is the ring of integers. If a is a prime ideal, from the previous theorem there exists the
inverse element. In the general case, if a is an integral ideal, we know that there are unique
prime ideals pi such that a = p1 · · · pr. If b = p−1

1 · · · p−1
r , then ab = (1) = OK . From here, we

prove the following:

13



Theorem 6.2. Let a be a fractional ideal in K. Then a may be written uniquely (up order) by

a =

r∏
i=1

pvii ,

where vi ∈ Z.

In fact, we can write every fractional ideal as a = b
c , with a and b integral ideals. Let PK be

the subgroup of JK of principal fractional ideals, i.e., ideals of the form (a) = aOK , for some
a ∈ K∗.

Definition 6.2. The ideal class group of a number field K, as the quotient group

ClK = JK/PK .

Another way to see the ideal class group is considering the following equivalence relation: two
fractional ideal a and b are equivalent if there is a ∈ K∗ such that a = (a)b.

Theorem 6.3. ClK is a finite abelian group. The order is denoted by hK and is called the
class number of K.

The main steps to prove the theorem are the following:

• Every ideal class contains an integral ideal a such that

N(a) ≤ n!

nn

(
4

π

)r2 √
|DK | (Minkowski bound),

where n = r1 + 2r2

• There are finitely many ideals a with N(a) bounded.

For more details, see [2].

In general, OK is not a UFD. However, ClK is trivial if and only if OK is a PID, which is
equivalent to be an UFD.

Example 5. Find hk if K = Q(
√
−14).

Minkowski bound: 2!
22

(
4
π

)0 √
4 · 14 =

√
14 < 4. Then, every class ideal has an integral represen-

tative a with N(a) < 4. Note that if a = p1p2 . . . pr, then N(p) = pf , so p = 2 or 3. Let us see
the factorization of 2OK and 3OK .

• x2 − 14 ≡ x2 (mod 2), then 2OK = (2,
√
14)2.

• x2 − 14 ≡ x2 + 1 (mod 3) which is irreducible, then 2OK is prime.

Therefore, p = (2,
√
14) or (3).(2,

√
14) is a principal ideal if and only if there is an element

a + b
√
14 with N(a + b

√
14) = ±2 and (2,

√
14) = (a + b

√
14). It is no difficult to prove that

(2,
√
14) = (4 +

√
14) so hK = 1.
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7 Dirichlet’s Unit Theorem

An element α ∈ OK is a unit, if there is an element β ∈ OK such that αβ = 1. The following
theorem, describe the structure of the group of units of OK , denoted by UK .

Theorem 7.1. Let K be a number field of degree n over Q with r1 and r2 the number of real and
nonreal embedding over C. Then there exist fundamental units ε1, . . . εr, with r = r1 + r2 − 1,
such that every ε ∈ O∗

K can be written in a unique way by

ε = ζεn1
1 · εnr

r , ni ∈ Z,

where ζ is a root of unity in OK . More precisely, if WK is the group of root of unity in O∗
K ,

then WK is finite, cyclic and O∗
K

∼= WK × Zr.

Imaginary Quadratic Fields

• d ≡ 2, 3 (mod 4).
In this case, OK = Z[

√
d] and a+ b

√
d ∈ O∗

K if and only if a2 − b2d = 1.

If b = 0, then a = ±1 and O∗
K

∼= {±1} ∼= Z2.

If b ̸= 0, then a2 − b2d ≥ −d and −d ≤ −1. If d = −1, a2 − b2d = a2 + b2 = 1, then
a = ±1, b = 0 or a = 0, b = ±1. Therefore, O∗

K
∼= {±1,±i} ∼= Z4.

• d ≡ 1 (mod 4).

In this case, OK = Z[ 1+
√
d

2 ] and a+b
√
d

2 ∈ O∗
K if and only if a2 − b2d = 4.

If −d ≥ 4, then b = 0 and a = ±2, so O∗
K

∼= Z2.

If d = −3, a2 − b2d = a2 + 3b2 = 4, then a = ±2 and b = 0 or a = ±1 and b = ±1, so
O∗

K
∼= {±ζ3,±ζ23 ,±1} ∼= Z6.

Remark 5. O∗
K is finite if and only if K = Q or K is an imaginary quadratic field.

Real Quadratic Fields K ⊂ R and r1 = 2, so WK = {±1} and O∗
K

∼= {±1} × Z.
Characterization of the fundamental unit:

• d ≡ 2, 3 (mod 4).

If b = min{b̃ : db̃2 ± 1 = a2 : for some a > 0}, then a + b
√
d is a fundamental unit.

(Exercise)

• d ≡ 1 (mod 4).

If b = min{b̃ : db̃2 ± 4 = a2 : for some a > 0}, then a + b
√
d is a fundamental unit.

(Exercise)

Example 6. Q(
√
3): min{b̃ : db̃2 ± 1 = a2 : for some a > 0} = 1 and a = 2, then 2 +

√
2 is a

fundamental unit.

Definition 7.1. The regulator of a number field K is given by

RK := |det(log |ε(i)j |ij),

where ε
(i)
j is the real or complex embedding of the fundamental unit ε.

The regulator RK gives us a measure of the size of UK .
A different way to find fundamental units is by continued fractions.
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Theorem 7.2. Let n be the period of the continued fraction of
√
d with d square free and let

Ck = pk/qk be the k-th convergent. If d ≡ 2, 3 (mod 4), then pn−1+ qn−1

√
d is the fundamental

unit of Q(
√
d).

Example 7. In Q(
√
6), we have that

√
6 = [2; 2, 4] (exercise). Then, C1 = p1

q1
= a0 +

1
a1

=

2 + 1
2 = 5

2 and 5 + 2
√
6 is a fundamental unit.

8 Analytic Class Number Formula

If K is a number field, we define the Dedekind zeta function associated with K by

ζK(s) =
∑

a̸=0 ideal

1

N(a)s
, s ∈ C.

This function encodes a lot of information about the number field K. Properties:

• ζK(s) =
∏

p prime(1−N(p)−s)−1, is an holomorphic function if Re(s)>1.

• In s = 1, ζK(s) is a divergent series.

• It has a meromorphic continuation to the left side of Re(s)>1.

Theorem 8.1. Let K be a number field of degree n over Q with r1 and r2 the number of real
and complex embedding over C. Then ζK(s) extends to a meromorphic function defined for all
s ∈ C with a simple pole in s = 1 and

lim
s→∞

ζK(s) =
2r1(2π)r2hKRK

|WK |
√
|DK |

,

where WK is the group of unity in OK and RK is the regulator of K.

8.1 Class Number of Quadratic Number Fields

If K is a quadratic number field, let us consider the Dirichlet function associated with the
quadratic character given by the extended Jacobi symbol χK(m) =

(
DK

m

)
,

L(χK , s) =

∞∑
n=1

χK(m)

ns
.

This function is related to the class number by the following identity:

lim
s→∞

ζK(s) = L(χK , 1).
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9 Exercises

1. Let d1 and d2 square-free integers different from 0 and 1. Prove that Q(
√
d1) and Q(

√
d2)

are equal if and only if d1 = d2.

2. Let θ be an algebraic integer such that its minimal polynomial is Einsenstein in the prime
p. Prove that if K = Q(θ), then p is totally ramified in OK .

3. Prove that if p ∤ [OK : Z[θ]], then p ramifies in OK if and only of p | DK .

4. If K = Q(θ) and OK = Z[θ], prove that if p|DK , then p ramifies in K.

5. (i) Let K be a number field with [K : Q] = n and β ∈ OK . Prove that β ∈ O∗
K if and

only if NK(β) = 1.

(ii) Prove that Z[
√
2]∗ = {±(1 +

√
2)k : k ∈ Z} and Z[

√
2]∗ = {±1}

6. If K is a number field, prove that its discriminant DK is an integer.

7. Let a1, . . . , an ∈ OK linearly independent over Q. Let N = Za1 + . . . + Zan and m =
[OK : N ]. Prove that DK(a1, . . . , an) = m2DK . (Hint: Use the following result: Let
M = Zα1 + . . . + Zαn and N be a sub-module. Then there exists β1, . . . , βm ∈ N with
m ≥ n such that N = Zβ1 + . . .+ βmZ and βi =

∑
j≥i pijαj with 1 ≤ i ≤ m and pij ∈ Z)

8. Let f(x) = xn + an−1x
n−1 + . . . + a1x + a0 ∈ Z[x] the minimal polynomial of θ. Let

K = Q(θ). If for each prime p such that p2|DK(θ) we have f(x) Eisensteinian (that is,
f(x) satisfies the irreducibly Eisenstein’s criterion for p) with respect to p. Show that
OK = Z[θ]. (Hint: Use the previous problem)

9. If the minimal polynomial of α over Q is f(x) = xn + ax+ b and K = Q(α), show that

DK(α) = (−1)(
n
2)(nnbn−1 + an(1− n)n−1).

10. (a) Determine the ring of integers of Q( 3
√
2).

(b) Determine the factorization of 7, 29 and 31 in Q( 3
√
2).

11. Compute the discriminant of a quadratic number field.

12. Let OK = Z[α], where K = Q(
√
d), d is a square-free integer. If f is the minimal

polynomial of α over Q, show that

f(x) =

{
x2 − d, if d ≡ 2, 3 (mod 4)
x2 − x+ 1−d

4 , if d ≡ 1 (mod 4)
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