Problems Finite Fields, July 27, 2023

Problem 1. Show that

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$$

Problem 2. Let $N_n(q)$ be the number of irreducible monic polynomials over \mathbb{F}_q of degree n. Show that

$$N_n(q) = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}.$$

Deduce that for $n \geq 2$ we have

$$\frac{q^n}{2n} \le N_n(q) \le \frac{q^n}{n}.$$

Problem 3. The field \mathbb{F}_{64} is an extension of degree 6 of the prime field \mathbb{F}_2 .

- (i) List the subfields of \mathbb{F}_{64} .
- (ii) Decompose $X^{64} X$ into irreducible polynomials over \mathbb{F}_2 . Check the correspondence between the minimal subsets of $\mathbb{Z}/63\mathbb{Z}$ which are stable under the multiplication by 2 and the irreducible factors of $X^{63}-1$ over \mathbb{F}_2 .
- (iii) Which are the degrees of the elements $\alpha \in \mathbb{F}_{64}$ with $\operatorname{Tr}_{\mathbb{F}_{64}/\mathbb{F}_2}(\alpha) = 0$?