Explicit Methods in Algebraic Number Theory

Amalia Pizarro Madariaga
Instituto de Matemáticas
Universidad de Valparaíso, Chile
amalia.pizarro@uv.cl

1 Lecture 3

1.1 Ideal Class Group

Let J_{K} the group of fractional ideals of K and P_{K} the subgroup of J_{K} of principal fractional ideals. Class group of K is the quotient $C l(K)=J_{K} / P_{K}$. It is known that it is a finite abelian group and its order h_{K} is called the class number of K. In general, \mathcal{O}_{K} is no a UFD. However, $C l(K)$ is trivial if and only if \mathcal{O}_{K} is a PID, which is equivalent to be an UFD. Let us recall that, the main steps to prove the finiteness of $C l(K)$ are the following:

- Every ideal class contains an integral ideal \mathfrak{a} such that

$$
N(\mathfrak{a}) \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|D_{K}\right|} \quad(\text { Minkowski bound })
$$

where $n=r_{1}+2 r_{2}$

- There are finitely many ideals \mathfrak{a} with $N(\mathfrak{a})$ bounded.

Theorem 1.1. Let \mathfrak{a} be a fractional ideal in K. Then \mathfrak{a} may be written in a unique way (up order) by

$$
\mathfrak{a}=\prod_{i=1}^{r} \mathfrak{p}_{i}^{v_{i}},
$$

where $v_{i} \in \mathbb{Z}$.
Example 1. Find h_{k} if $K=\mathbb{Q}(\sqrt{-14})$.
Minkowski bound: $\frac{2!}{2^{2}}\left(\frac{4}{\pi}\right)^{0} \sqrt{4 \cdot 14}=\sqrt{14}<4$. Then, every class ideal has an integral representative \mathfrak{a} with $N(\mathfrak{a})<4$. Note that if $\mathfrak{a}=\mathfrak{p}_{1} \mathfrak{p}_{2} \ldots \mathfrak{p}_{r}$, then $N(\mathfrak{p})=p^{f}$, so $p=2$ or 3. Let us see the factorization of $2 \mathcal{O}_{K}$ and $3 \mathcal{O}_{K}$.

- $x^{2}-14 \equiv x^{2}(\bmod 2)$, then $2 \mathcal{O}_{K}=(2, \sqrt{14})^{2}$.
- $x^{2}-14 \equiv x^{2}+1(\bmod 3)$ which is irreducible, then $2 \mathcal{O}_{K}$ is prime.

Therefore, $\mathfrak{p}=(2, \sqrt{14})$ or $(3) .(2, \sqrt{14})$ is a principal ideal if and only if there is an element $a+b \sqrt{14}$ with $N(a+b \sqrt{14})= \pm 2$ and $(2, \sqrt{14})=(a+b \sqrt{14})$. It is no difficult to prove that $(2, \sqrt{14})=(4+\sqrt{14})$ so $h_{K}=1$.

1.2 Analytic Class Number Formula

If K is a number field, we define Dedekind zeta function associated to K by

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \neq 0 \text { ideal }} \frac{1}{N(\mathfrak{a})^{s}}, s \in \mathbb{C} .
$$

This function encodes a lot of information about the number field K. Properties:

- $\zeta_{K}(s)=\prod_{\mathfrak{p} \text { prime }}\left(1-N(\mathfrak{p})^{-s}\right)^{-1}$, is an holomorphic function if $\operatorname{Re}(s) \dot{ } 1$.
- In $s=1, \zeta_{K}(s)$ is divergent.
- It has an meromorphic continuation to the left side of $\operatorname{Re}(s) ¿ 1$.

Theorem 1.2. Let K be a number field of degree n over \mathbb{Q} with r_{1} and r_{2} the number of real and nonreal embedding over \mathbb{C}. Then $\zeta_{K}(s)$ extends to a meromorphic function defined for all $s \in \mathbb{C}$ with a simple pole in $s=1$ and

$$
\lim _{s \rightarrow \infty} \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{\left|W_{K}\right| \sqrt{\left|D_{K}\right|}}
$$

where W_{K} is the group of unity in \mathcal{O}_{K} and R_{K} is the regulator of K.

1.3 Class Number of Quadratic Number Fields

If K is a quadratic numbe field, let us consider the Dirichlet function associated to the quadratic character given by the extended Jacobi symbol $\chi_{K}(m)=\left(\frac{D_{K}}{m}\right)$,

$$
L\left(\chi_{K}, s\right)=\sum_{n=1}^{\infty} \frac{\chi_{K}(m)}{n^{s}} .
$$

This function, is related with the class number by the following identity:

$$
\lim _{s \rightarrow \infty} \zeta_{K}(s)=L\left(\chi_{K}, 1\right)
$$

