Explicit Methods in Algebraic Number Theory

Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amalia.pizarro@uv.cl

1 Lecture 3

1.1 Ideal Class Group

Let J_K the group of fractional ideals of K and P_K the subgroup of J_K of principal fractional ideals. Class group of K is the quotient $Cl(K) = J_K/P_K$. It is known that it is a finite abelian group and its order h_K is called the class number of K. In general, \mathcal{O}_K is no a UFD. However, Cl(K) is trivial if and only if \mathcal{O}_K is a PID, which is equivalent to be an UFD. Let us recall that, the main steps to prove the finiteness of Cl(K) are the following:

ullet Every ideal class contains an integral ideal ${\mathfrak a}$ such that

$$N(\mathfrak{a}) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|D_K|}$$
 (Minkowski bound),

where $n = r_1 + 2r_2$

• There are finitely many ideals \mathfrak{a} with $N(\mathfrak{a})$ bounded.

Theorem 1.1. Let \mathfrak{a} be a fractional ideal in K. Then \mathfrak{a} may be written in a unique way (up order) by

$$\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i^{v_i},$$

where $v_i \in \mathbb{Z}$.

Example 1. Find h_k if $K = \mathbb{Q}(\sqrt{-14})$.

Minkowski bound: $\frac{2!}{2^2} \left(\frac{4}{\pi}\right)^0 \sqrt{4 \cdot 14} = \sqrt{14} < 4$. Then, every class ideal has an integral representative \mathfrak{a} with $N(\mathfrak{a}) < 4$. Note that if $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2 \dots \mathfrak{p}_r$, then $N(\mathfrak{p}) = p^f$, so p = 2 or 3. Let us see the factorization of $2\mathcal{O}_K$ and $3\mathcal{O}_K$.

- $x^2 14 \equiv x^2 \pmod{2}$, then $2\mathcal{O}_K = (2, \sqrt{14})^2$.
- $x^2 14 \equiv x^2 + 1 \pmod{3}$ which is irreducible, then $2\mathcal{O}_K$ is prime.

Therefore, $\mathfrak{p}=(2,\sqrt{14})$ or $(3).(2,\sqrt{14})$ is a principal ideal if and only if there is an element $a+b\sqrt{14}$ with $N(a+b\sqrt{14})=\pm 2$ and $(2,\sqrt{14})=(a+b\sqrt{14})$. It is no difficult to prove that $(2,\sqrt{14})=(4+\sqrt{14})$ so $h_K=1$.

1.2 Analytic Class Number Formula

If K is a number field, we define Dedekind zeta function associated to K by

$$\zeta_K(s) = \sum_{\mathfrak{a} \neq 0 \text{ ideal}} \frac{1}{N(\mathfrak{a})^s}, \ s \in \mathbb{C}.$$

This function encodes a lot of information about the number field K. Properties:

- $\zeta_K(s) = \prod_{\mathfrak{p} \text{ prime}} (1 N(\mathfrak{p})^{-s})^{-1}$, is an holomorphic function if $\text{Re}(s) \dot{\xi} 1$.
- In s = 1, $\zeta_K(s)$ is divergent.
- It has an meromorphic continuation to the left side of Re(s); 1.

Theorem 1.2. Let K be a number field of degree n over \mathbb{Q} with r_1 and r_2 the number of real and nonreal embedding over \mathbb{C} . Then $\zeta_K(s)$ extends to a meromorphic function defined for all $s \in \mathbb{C}$ with a simple pole in s = 1 and

$$\lim_{s \to \infty} \zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{|W_K| \sqrt{|D_K|}},$$

where W_K is the group of unity in \mathcal{O}_K and R_K is the regulator of K.

1.3 Class Number of Quadratic Number Fields

If K is a quadratic numbe field, let us consider the Dirichlet function associated to the quadratic character given by the extended Jacobi symbol $\chi_K(m) = \left(\frac{D_K}{m}\right)$,

$$L(\chi_K, s) = \sum_{m=1}^{\infty} \frac{\chi_K(m)}{n^s}.$$

This function, is related with the class number by the following identity:

$$\lim_{s \to \infty} \zeta_K(s) = L(\chi_K, 1).$$