
CIMPA SCHOOL ON SERRE’S BIG IMAGE THEOREM:
BASIC NOTIONS

MATIAS ALVARADO

Abstract. In this mini-course, we present the prerequisites for the continuation of the
program. In particular we remind some aspects of elliptic curves and study the classification
of subgroups of GL2(Fp).

Introduction

The main goal of these notes is to remind the necessary background to understand the
statement of Serre’s theorem. This mini-course has three lectures of 2 hours each. The plan
for the course is as follows

1. Some aspects of algebraic geometry.
2. Definition of elliptic curves
3. The arithmetic of elliptic curves I
4. The arithmetic of elliptic curves II
5. The arithmetic of elliptic curves III
6. Classification of subgroups of GL2(Fp).

1. Lecture 1: Algebraic curves and elliptic curves

Let k be a field, and k̄ be a fixed algebraic closure of k. Generally in this school we are
mostly interested when k is a number field (for example Q, Q(i), Q( 5

√
7), etc.), a finite field

(for example F2, F47, F81, etc.), or an extension of the p-adic numbers (for example Q3, Q71,
Q(i)(1+i), etc.)

1.1. Generalities on algebraic geometry. In this section, we recall some concepts and
facts on algebraic geometry, more concretely about algebraic curves. Since we need to cover
several topics in this mini-course, we only deal with plane curves. For more details on
algebraic geometry, you can see [SR94], [Ful08], or Chapter 1 in [Har13]. We start defining
the ambient spaces, namely the affine and projective spaces over k. We define the affine and
projective space of arbitrary dimension, but very soon, we focus on dimension 2.

Definition 1. The affine space is the set

An = An(k̄) = {p = (x1, ..., xn) : xi ∈ k̄}.

The k-rational points of An is defined as the set

An(k) = {p = (x1, ..., xn) ∈ An : xi ∈ k}.
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Definition 2. The projective space denoted by Pn or Pn(k̄) is the set of equivalence classes
of elements

(x0, ..., xn) ∈ An+1 \ {(0, 0, ..., 0)},
where

(x0, ..., xn) ∼ (y0, ..., yn)

if there is λ ∈ k̄⋆ such that xi = λyi for all i ∈ {0, 1, ..., n}.

Remark 1.1. The equivalence class of (x0, ..., xn) is denoted by [x0 : ... : xn].

Similarly to the case of the affine space, we define the set of k-rational points of Pn as

Pn(k) = {[x0 : ... : xn] ∈ Pn : ∃y0, ..., yn ∈ k, and (x0, ..., xn) ∼ (y0, ..., yn)}.

Remark 1.2. If [x0, ..., xn] ∈ P1(k), then it does not implies that each xi ∈ k. For example
[
√
2 + 5 :

√
8 + 10] ∈ P1(Q) (why?), but (

√
2 + 5) /∈ Q.

Now we specialize to n = 2.
In P2, there are many copies of A2. We explore 3 of these. We define

U0 = {[x : y : z] ∈ P2 : x = 1}

U1 = {[x : y : z] ∈ P2 : y = 1}
U2 = {[x : y : z] ∈ P2 : z = 1}

Definition 3. The subsets U0, U1, U2 of P2 are called the affine charts of P2.

Let Gal(k̄/k) be the absolute Galois group of k. There is an action of Gal(k̄/k) on A2 and
P2. If σ ∈ Gal(k/k), and (x1, x2) ∈ A2, then

σ.(x1, x2) = (σ(x1), σ(x2)).

Similarly, if [x0 : x1 : x2] ∈ P2, then

σ.[x0 : x1 : x2] = [σ(x0) : σ(x1) : σ(x2)].

The sets of k-rational points can be characterized as the set of the fixed points via the
action of the Galois group, i.e.

An(k) = (An)Gal(k̄/k) and Pn(k) = (Pn)Gal(k̄/k)

1.1.1. Algebraic curves. Let f be a polynomial in k̄[x, y]

Definition 4. An affine algebraic curve is any set of the form

V (f) = {(x, y) ∈ A2 : f(x, y) = 0}

Definition 5. We say that an algebraic curve X is defined over k̄ if there is a polynomial
f ∈ k[x, y], such that X = V (f).

Definition 6. If X is an affine algebraic curve defined over k, then the set of k-rational
points is defined as

X(k) = X ∩ A2(k)

Note that if X is defined by the polynomial f ∈ k[x, y], then X(k) is the set of all solutions
of f in k2.
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Remark 1.3. We often write X/k to denote that the algebraic curve X is defined over the
field k.

Now, we introduce the notion of projective algebraic curves.

Definition 7. A polynomial f ∈ k̄[x0, ..., xn] is homogeneous of degree d if

f(λx0, ..., λxn) = λdf(x0, ..., xn).

Definition 8. A projective algebraic curve is any set of the form V (f) ⊂ P2 for a homoge-
nous polynomial f(x, y, z).

Remark 1.4. Note that the solutions of a homogeneous polynomial are well defined in P2.

1.1.2. From an affine curve to a projective curve. Let f(x, y) ∈ k̄[x, y] be a polynomial, and
consider V (f) the affine curve associated with f. We can associate a projective curve to f
via the homogenezation of f .

Let d be the degree of f . Let F (x, y, z) be the polynomial defined by

F (x, y, z) = zdf (x/z, y/z) .

F (x, y, x) is a homogeneous polynomial of degree d.
In this way, we construct the projective variety associated with F . This projective curve

is called the projectivization of V .
In general, we like working with projective curves (these curves have many good proper-

ties in contrast to the affine case). Often, projective curves are defined by non-homogeneous
polynomials. In this case, we understand that it refers to the curve defined by the projec-
tivization of the polynomial.

Example 1. If we say, let E be the projective curve defined by y2 = x3 − 1, we understand
that the curve E is the projective curve associated with the polynomial zy2 − x3 − z3.

1.1.3. From a projective curve to an affine curve. Let X be a projective curve given by a
polynomial F (x, y, z); then we can get three different affine curves from X, which we call
them the affine charts. Let X ∩ U0 = {F (1, y, z) = 0}, X ∩ U1 = {F (x, 1, z) = 0}, and
X ∩ U2 = {F (x, y, 1) = 0}.

1.1.4. Singular points and smooth curves.

Definition 9. Let X be a planar curve defined by a polynomial f(x, y, z). A point (x0, y0, z0)
is said singular point of X is (x0, y0, z0) is a simultaneous solution of the following equation
system

f(x0, y0, z0) = 0

∂f

∂x
(x0, y0, z0) = 0

∂f

∂y
(x0, y0, z0) = 0

∂f

∂z
(x0, y0, z0) = 0

Definition 10. A curve X with no singular points is called a smooth curve.
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Now, we introduce the function field of a curve. Let f be an irreducible polynomial on
k[x, y], and X be the curve over k associated with f . We define the field of rational field as

k(X) = Frac

(
k[x, y]

(f(x, y))

)
. At the same way, we define th field of rational function over k̄ as

k̄(X) = Frac

(
k̄[x, y]

(f(x, y))

)
.

1.1.5. Morphisms between curves. Let X1 = {f = 0}, and X2 = {g = 0} be two curve
defined over k.

Definition 11. A regular map is a function ϕ : X1 → X2, with ϕ = [φ0, φ1, φ2], where the
functions φ0, φ1 and φ2 ∈ k(X1), such that for any p ∈ X1, [φ0(p) : φ1(p) : φ2(p)] ∈ X2

Similarly, a morphism from X1 to P1 is a tuple [f, g] such that f, g ∈ k(X1), and for any
p ∈ X1, [f(p) : g(p)] ∈ P1. In this way, given f ∈ k(X), it defines a morphism (that we also
call f)

f : C −→ P1

p 7−→ [f(p) : 1],

Conversly, let ϕ : X → P1, ϕ = [f, g], be a morphism X1 → P1. Then f/g ∈ k(X).
Each morphism of curves has a field extension associated. Let’s see this construction. Let

X1/k and X2/k be curves defined over k, and let ϕ : X1 → X2 be a nonconstant morphism
defined over k. Then, composition with ϕ induces a morphism of function fields

ϕ∗ : k(X2)→ k(X1)

defined as ϕ∗(f) = f ◦ ϕ.

Definition 12. The degree of a morphism ϕ : X1 → X2 is defined as the degree of the
extension k(X1)/k(X2).

Definition 13. We say that a morphism ϕ : X1 → X2 is separable (resp. inseparable or
purely inseparable) if the corresponding extension k(X1)/k(X2) is separable (resp. inseparable
or purely inseparable).

Example 2. Let char(k) = p > 0, and let q = pr. Let f(x, y, z) ∈ k[x, y, z] be a homogeneous
polynomial. We define f (q) be the polynomial obtained from f by raising each coefficient of
f to the qth-power. If X is the projective curve defined by f , then we define the curve X(q)

defined by the polynomial f (q). The Frobenious map X → X(q) is defined by [x0 : x1 : x2] 7→
[xq0 : x

q
1 : x

q
2]

Each morphism ϕ : X1 → X2 facts as

X1 → X
(q)
1 → X2.

Here the morphism X1 → X
(q)
1 is the q-Frobenious map, and X

(q)
1 → X2 is a separable

morphism.

Definition 14. Let ϕ : X1 → X2 be a morphism which factos as

X1 → X
(q)
1 → X2,
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Then the separable degree is defined as degs(ϕ) = [k(X
(q)
1 ) : k(X2], the inseparable degree is

defines as degi(ϕ) = [k(X1) : k(X
(q)
1 )]

Remark 1.5.

deg(ϕ) = degi(ϕ) · degs(ϕ)

Remark 1.6. If k is of characteristic zero, then any nonconstant morphism between curves
is separable

1.1.6. Divisors. The divisor group of a curve X, denoted by Div(X) is the free abelian group
generated by the points of X.

A divisor D ∈ Div(X) is a formal sum

D =
∑
p∈X

np · p

where np ∈ Z, and for almost all p ∈ C, np = 0.
The Galois group Gal(k̄/k) acts on Div(X). If σ ∈ Gal(k̄/k), and D =

∑
np ·p ∈ Div(X),

then

σ(D) =
∑
p∈X

npσ(p).

Definition 15. Let D ∈ Div(X). We say that D is defined over k, if

D = σ(D), for all σ ∈ Gal(k̄/k).

The subgroup of divisors defined over k is denoted by Divk(X).

Remark 1.7. If a divisor D =
∑

p∈C npp is defined over k, then it is not true in general that

for any p with np ̸= 0, p ∈ X(k).

Now we assume that the curve X is smooth, and let f ∈ k̄(X)×, then there is a divisor
associated to f . This divisor is denoted by div(f) and is given by

div(f) =
∑
p∈X

ordp(f) · p.

In this way we get a morphism div : k̄(X)⋆ → Div(X)

Definition 16. We say that a divisor D ∈ Div(X) is principal if there is f ∈ k(X)× such
that D = div(f). The subgroup of all principal divisors is denoted by Prin(X)

In the group Div(X), we introduce an equivalence relation, called linear equivalence.
D1 ∼ D2 if there is a function f ∈ k(X) such that D1−D2 = div(f), i.e. D1−D2 ∈ Prin(X).
The quotient group Div(X)/Prin(X) is called the Picard group and denoted by Pic(X).

1.2. Elliptic curves. The approach we take to define elliptic curves is via Weierstrass equa-
tions.

Definition 17. A Weierstrass equation over k is a cubic polynomial equation in two variables
that looks like

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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If, in addition, a1 = a2 = a3 = 0, then we have an equation of the form

y2 = x3 + Ax+B,

which are called short Weierstrass equations.

Definition 18. An elliptic curve over k is a smooth projective curve E ⊂ P2 defined by the
homogenization of a Weierstrass equation.

Note that the point O = [0 : 1 : 0] always belong to E(k). O is the unique point outside
the affine chart U2.

1.2.1. Group law. The set of k-rational points in an elliptic curve E has a group structure.
Before defining the group structure, we recall a geometric result. Let L be a line in P2. Then
E ∩ L has 3 points (counting multiplicities) by Bezout’s theorem.

Let p, q ∈ E(K), let L the line throught p and q. If p = q, the line L is the tangent line at
p. Let r be the third intersection point between E and L (possibly r = p or r = q). now let
L′ be the line through r and O. The third point of intersection between E and L is denoted
by p⊕ q.

Proposition 1.8. The function

⊕ : E(k)× E(k) −→ E(k)

(p, q) 7−→ p⊕ q

has the following properties

(a) If a line L intersect E at the points p, q and r, then (p⊕ q)⊕ r = O
(b) p⊕O = p for all p ∈ E(k)
(c) p⊕ q = q ⊕ p for all p, q ∈ E(k)
(d) for all p ∈ E(k), there is a point ⊖p, such that

p⊕ (⊖p) = O

(e) Let p, q, r ∈ E(k). Then

(p⊕ q)⊕ r = p⊕ (q ⊕ r)

Proof. See Proposition 2.2 in [Sil09] □

Corollary 1.9. E(k) with the operation ⊕ form an abelian group.

The following theorem, known as the Mordell-Weil theorem, gives the structure of the
group (E(k),⊕).

Theorem 1.10. Let k be a number field, then E(k) is finitely generated

Corollary 1.11. there exist a natural number r, and a finite subgroup T of E(k), such that

E(k) ≃ Zr ⊕ T

The number r in the previous corollary is called the (algebraic) rank of E, and T corre-
sponds to torsion points.
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2. Lecture 2: The arithmetic of elliptic curves

Definition 19. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a nonzero
morphism

ϕ : E1 → E2

such that ϕ(OE1) = OE2

We visit some neccesary results on isogenies in order to understand the structure of the
set of m-torsion points of an elliptic curve.

Theorem 2.1. Let ϕ : E1 → E2 be a nonzero isogeny, then

(a) For every Q ∈ E2

#ϕ−1(Q) = degs(ϕ).

In particular if ϕ is separable, then

#ker(ϕ) = deg(ϕ)

Proof. See Theorem 4.10 in [Sil09]. □

In particular if E = E1 = E2, then an isogeny E → E is called an endomorphism.
The set of endomorphisms (denoted by End(E)) is endowed with a ring structure. Let
ϕ, ψ ∈ End(E), then the sum is as functions, and the product is defined by the composition.
The ring End(E) is a free Z-algebra. For curves over fields of charcateristic zero, End(E) is
either Z or an order O in a quadratic imaginary extension of Q.

Definition 20. Let k be a field of characteristic zero. If E/k is an elliptic curve. We say that
E has real multiplication if End(E) ≃ Z. On the other hand, if End(E) is isomorphic to an
order in a quadratic imaginary extension of Q, then we say that E has complex multiplication,
or simply we say that E is a CM curve.

If k has positive charcateristic, then End(E) can be also isomorphic to an order in a
quaternion algebra.

Given E an elliptic curve, and a integer m, there is a dintinguished isogeny.

[m] : E(k) −→ E(k)

p 7−→ p⊕ p⊕ · · · ⊕ p︸ ︷︷ ︸
m-times

If ϕ : E1 → E2 is an isogeny of degree m, then there exists an isogeny in the other
direction ϕ̂ : E2 → E1, which is called the dual isogeny and such that ϕ̂ ◦ ϕ = [m]. Some of
the properties of the dual isogenies are summarized in the following proposition

Proposition 2.2. Let ϕ, ψ : E1 → E2 be two isogenies from E1 to E2, and λ an isogeny from
E2 → E3, then

(i) let m = deg(ϕ), then ϕ̂ ◦ ϕ = [m]

(ii) λ̂ ◦ ϕ = λ̂ ◦ ϕ̂
(iii) ϕ̂+ ψ = ϕ̂+ ψ̂

(iv) [̂m] = [m]

(v) deg(ϕ) = deg(ϕ̂)
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(vi)
ˆ̂
ϕ = ϕ

Proof. See for example Theorem 6.2 in [Sil09] □

Now we study the points of m-torsion. The subgroup of m-torsion is defined as ker([m])
and we denote it by E[m]. In other words E[m] = {p ∈ E : [m]p = 0}. Similarly, the
k-rational points E[m](k) = {p ∈ E(k) : [m]p = 0}.

As the isogenies [m] are defined over k, we have that for any σ ∈ Gal(k̄/k), σ([m]p) =
[m]σ(p). We conclude that Gal(k̄/k) acts on E[m] for all m.

Now we explore the structure of the set E[m].

Proposition 2.3. Let E be an elliptic curve and let m ∈ Z.
(a) deg([m]) = m2

(b) If char(k) = 0 or p = char(k) > 0 and p ∤ m, then

E[m] ≃ Z
mZ
× Z
mZ

(c) If char(k) = p, then one of the following hold
(i) E[pe] = {O} for all e ∈ N

(ii) E[pe] =
Z
peZ

for all e ∈ N.

Proof.

(a) As we saw previously, [̂m] = [m]. Then if d = deg([m]), we have

[d] = [m] ◦ [̂m] = [m] ◦ [m] = [m2].

We know that the ring of endomorphisms is torsion free Z-module. The we conclude
d = m2.

(b) Since char(k) ∤ m, we have that the isogeny [m] is separable. Then by Theorem
Theorem 2.1(b), we have

#E[m] = deg[m] = m2.

Additionally, for any prime divisor p of m, we have

E[p] =
Z
pZ
× Z
pZ
,

by the classification of abelian groups of order p2. This is now an exercide of group
theory to prove that this implies that

E[m] ≃ Z
mZ
× Z
mZ

.

(c) Let ϕ be the Frobenious morphism

#E[pe] = degs[p
e]

= (degs(ϕ̂ ◦ ϕ))e

= (degs ϕ̂)
e

If ϕ̂ is inseparable, then E[pe] = 1. On the other hand, if ϕ̂ is separable, then

E[pe] ≃ Z/peZ.
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□

Theorem 2.4 (Serre’s Theorem). Let E be an elliptic curve over a number field k and
suppose that for an infinite set of primes p the image of Gal(k̄/k) acting on the p-torsion
points of E is strictly smaller than GL2(Fp). Then E has CM.

2.0.1. Tate module. Let k be a field such that char(k) or char(k) ∤ m. As we saw in previous
sections, Gal(k̄/k) acts on E[m]. Equivalently, there exists a map Gal(k̄/k)→ Aut(E[m]) ≃
GL2(Z/mZ). In this way we construct a Galois representation associated to E. In order to
construct a Galois reprepresentation over a ring of characteritic zero, we introduce the Tate
module. Let ℓ be a prime number. Multiplication by ℓ define a group morphism between
E[ℓn+1] and E[ℓn]. In this way (E[ℓn], [ℓ]) form an inverse system. We define the ℓ-adic Tate
module of E as the inverse limit

Tℓ(E) = lim←−E[ℓ
n]

Remark 2.5. As each E[ℓn] is a Z/ℓnZ-module, we conclude that Tℓ(E) is a Zp-module

Proposition 2.6. As a Zℓ, the Tate module has the following structure

(i) Tℓ(E) ≃ Zℓ × Zℓ if ℓ ̸= char(k)
(ii) Tℓ(E) ≃ {0} or Zℓ is ℓ = char(k) > 0.

Proof. This is consequence of Proposition 2.3. □

The action of Gal(k̄/k) on E[ℓn] commute with the multiplication by ℓ, then Gal(k̄/k)
acts on Tℓ(E). Moreover, since Gal(k̄/k) acts continuosly on each finite group E[ℓn], then
the action on Tℓ(E) is continuos.
Now we can define the ℓ-adic representation associated to E.

Definition 21. The ℓ-adic representation of Gal(k̄/k) associated to E is the homomorphism

ρE,ℓ : Gal(k̄/k)→ Aut(Tℓ(E))

induced by the action of Gal(k̄/k) on the ℓn-torsion points of E.

If char(k) is zero or ℓ ∤ char(k), then Tℓ(E) is a free Zℓ-module of rank 2. If we take a
Zℓ-basis for Tℓ(E), then the ℓ-adic representation look like

Gal(k̄/k)→ GL2(Zℓ)

In particular, since Zp ⊂ Qℓ, then we can see the ℓ-adic representation as the morphism

Gal(k̄/k)→ GL2(Qℓ).

2.0.2. Functiorality of Tate module. Let E1, E2 be elliptic curves, and ϕ : E1 → E2 be an
isogeny. The isogeny ϕ induce a group homomorphism (also called ϕ)

ϕ : E1[ℓ
n]→ E2[ℓ

n].

Moreover, this induce a Zℓ-linear map

ϕℓ : Tℓ(E1)→ Tℓ(E2).

In this way we obatain a group homomorphism

Hom(E1, E2)→ Hom(Tℓ(E1), Tℓ(E2))
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2.0.3. Weil pairing. Let k be a field of charateristic not dividing a fixed integer m. Let µm

be the set of mth-root of unities. The idea is construct a bilinear, alternating, not degenerate
and Galois invariant pairing

em : E[m]× E[m]→ µm.

For the construction we need 2 lemmas.

Lemma 2.7. Let X1, X2 be two projective algebraic curves. Then any non-constant mor-
phism ϕ : X1 → X2 is surjective

Proof. See theorem II.2.3 in [Sil09] □

Lemma 2.8. Let E be an elliptic curve and let D =
∑
npp ∈ Div(E). Then D is a principal

divisor if and only if ∑
p∈E

np = 0 and
∑
p∈E

[np]p = O.

Proof. See Corollary III.3.5 in [Sil09] □

Next, we construct the Weil pairing.
Let T ∈ E[m]. Then there is a function f ∈ k̄(E) satisfying

div(f) = m(T )−m(O).

Take T ′ ∈ E a point such that [m]T ′ = T. Similarly, there is function g ∈ k̄(E) satisfying

div(g) =
∑

R∈E[m]

(T ′ +R)− (R).

We note f ◦ [m] = gm have the same divisor. Up to multiplying by a constant from k̄×,
we have

f ◦ [m] = gm.

Let S ∈ E[m], and X ∈ E. Then
g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m.

For any X, g(X + S)/g(X) is a mth-root of unity. Then the morphism E → P1 such that
X 7→ g(X + S)/g(X) is not surjective. Then we conclude that it is constant.

Definition 22. The Weil pairing is the function

em : E[m]× E[m]→ µm

defined by

em(S, T ) =
g(X + S)

g(X)

Proposition 2.9. The Weil pairing satifies the following properties:

(a) Bilinear

em(S1 + S2, T ) = em(S1, T )Em(S2, T )

em(S, T1 + T2) = Em(S, T1)em(S, T2).
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(b) Alternating

em(T, T ).

In particular em(S, T ) = em(T, S).
(c) Nondegenerate: if em(S, T ) = 1 for all S ∈ E[m], then T = O
(d) em and emm′ are compatible. This means

emm′(S, T ) = em([m
′]S, T )

for all S ∈ E[mm′] and T ∈ E[m]
(e) Galois invariant. Let σ ∈ Gal(k̄/k), then

σ(em(S, T )) = em(σ(S), σ(T )).

Proof. See Proposition III.8.1 in [Sil09]. □

In particular if m = ℓn, then we have the ℓn-Weil pairing

eℓn : E[ℓ
n]× E[ℓn]→ µℓn .

Note that µℓn with the morphisms µℓn+1 → µℓn with send ζ → ζℓ is a compatible inverse
system. We define the Tate module of µ as

Tℓ(µ) = lim←−µℓn .

Then taking inverse limit in the eℓn-Weil pairing, we get the ℓ-adic Weil pairing

e : Tℓ(E)× Tℓ(E)→ Tℓ(µ).

2.0.4. Cyclotomic character. Let k be a number field. Let ℓ be a prime number, and µℓn the
set of ℓn-root of unity. Then Gal(k̄/k) acts on µℓn . If ζ is a primitive root of unity, then for
any σ ∈ Gal(k̄/k), then there is an element a(σ, n) ∈ (Z/ℓnZ)× such that

σ(ζ) = ζa(σ,n).

This define a Galois representation

Gal(k̄/k)→ Aut(µℓn) ≃ (Z/ℓnZ)×

that is called the cyclotomic character.
Using the Weil pairing, we can see that the determinant character of the Galois represen-

tation coincide with the cyclotomic character.
Let σ ∈ Gal(k̄/k). Taking a basis {S, T} of E[ℓn] as a ZℓnZ-module, then σ acts as matrix(
a b
c d

)
. Then σS = aS + cT , and σT = bS + dT .
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σ(ζ) = σ(e(S, T ))

= e(σ(S), σ(T ))

= e(aS + cT, bS + dT )

= e(aS, bS)e(aS, dT )e(cT, bS)e(cT, dT )

= e(S, S)abe(S, T )ade(T, S)cbe(T, T )cd

= e(S, T )ade(TS)cd

= e(S, T )ad−bc

= ζad−bc.

3. Lecture 3:Subgroups of GL2(Fp)

We recall that a Galois representation mod p coming from an elliptic curve is a group
homomorphism

ρ : Gal(k̄/k)→ GL2(Fp).

The image of ρ is a subgroup of GL2(Fp). In this lecture we study and classify the subgroup
of GL2(Fp).We begin recalling to basic definitions of group theory. First, we recall the notion
of maximal subgroup. Let G be a group, and H ⊂ G be a subgroup. H is said maximal if
for any other subgroup K of G with H ⊂ K ⊂ G, we have K = H or K = G.
Let G be a group and H ⊂ G be a subgroup. The normalizer of H in G is defined by

NG(H) =
{
g ∈ G|gHg−1 = H

}
.

Now we introduce some kind of subgroup of GL2(Fp).

Definition 23. Any subgroup of GL2(Fp), which up to conjugation is of the form

{(
a b
0 d

)
; a, b, d ∈ Fp

}
is called a Borel subgroup.

Definition 24. Let ϵ ∈ F×
p be a non-square. We define to kind of subgroups

(i) Any subgroup of GL2(Fp), which up to conjugation is of the form

{(
a 0
0 d

)
; a, d ∈ Fp

}
is called a split Cartan subgroup.

(ii) Any subgroup of GL2(Fp), which up to conjugation is of the form

{(
a ϵb
b a

)
; a, b ∈ Fp

}
is called a nonsplit Cartan subgroup.

12



Finally we define the probably the most famous subgroups of GL2(Fp), namely the special
linear subgroup and the scalar matrices.

Definition 25. The special linear group denoted by SL2(Fp) is defined as

SL2(Fp) =

{(
a b
c d

)
; ad− bc = 1

}
.

Definition 26. The subgroup of scalar matrices is defined by

Z =

{(
a 0
0 a

)
; a ∈ Fp

}
.

Additionally we introduce a quotient of GL2(Fp) which is called the projective linear
group over Fp. This group is

PGL2(Fp) = GL2(Fp)/Z.

We are now in a position to state the classification theorem of the subgroup of GL2(Fp).

Theorem 3.1 (Classification of maximal subgroups of GL2(Fp)). Let G be a subgroup of
GL2(Fp) be a maximal subgroup (respect to inclusion order). Then one of the following hold

(i) SL2(Fp) is contained in G.
(ii) G is a Borel subgroup
(iii) G is the normalizer of a Cartan subgroup
(iv) The image of G in PGL2(Fp) via the quotient map GL2(Fp) ↠ PGL2(Fp) is isomor-

phic to A4, S4 or A5.

If p = 2, then the group GL2(F2) is not difficult to understand. In the following exercise
we explore this group.

Exercise 1. (i) Show that GL2(F2) has 6 elements
(ii) Prove that GL2(F2) is a non-abelian group.
(iii) conclude that GL2(F2) ≃ S3.

3.1. Subgroup of order divisible by p.

Lemma 3.2. Let A be a matrix in GL2(Fp) of order p, i.e. A
p = I. Then A is contained in

a Borel subgroup.

Proof. Let A be a matrix of order p. Let {L1, ..., Lp+1} the set of all lines in F2
p passing

through (0, 0). The matrix A sends a line Li to another line Lj. As the set of lines has
cardinality p + 1 and the order of A is p, we conclude that there exists a line fixed by the
action of A.
Let L be the line fixed by A, and v be a vector in the line L. Since A fixes L, there is

λ ∈ F×
p such that Av = λv. We conclude that v is an eigenvector of A. On the other hand,

there is not another eigenvector u lineraly independent to v. If u, v l.i. eigenvector of A.
Then A is diagonalizable, which implies that up to conjugation, it is a diagonal matrix. It is
a contradiction, because the diagonal matrix has order p − 1. On the other hand, A has to
λ as its unique eigenvalue, otherwise if µ is an eigenvalue, then Aw = µw. As µ ̸= λ, then
w is l.i. to v. So, the characteristic polynomial of A is (x− λ)2.
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Equivalently, we have im(A − λI) = ⟨v⟩ which is of dimension 1. We conclude that up

conjugacy, A has the form

(
a 1
0 a

)
. As A has order p, we conclude that up to conjugation,

A has the form

(
1 1
0 1

)
. In this way we conclude that any element of order p belong to a

Borel subgroup. □

Lemma 3.3. Suppose that a subgroup G ⊂ GL2(Fp) contains two order p elements, such
that neither of which is a power of the other. Then G contains SL2(Fp).

Proof. We begin recalling the group SL2(Z). This group is defined as the group 2x2 matrix
with entries in Z and determinant 1. We define two distinguished elemts in SL2(Z).

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

It is well-known that T and S generate SL2(Z). We define also the matrix

U =

(
1 0
1 1

)
.

We can check T = S−1US. Then U and S generate SL2(Z). We take now the projection
SL2(Z) ↠ SL2(Fp), which send each matrix to its reduction module p. Since this morphism
is surjective, the image of U and S generate SL2(Fp).
Since G cointains two matrices or order p, which is not a power of each other, up to

conjugation we can assume that theses matrices have the form(
1 1
0 1

)
and

(
1 0
1 1

)
.

Since these matrices generate SL2(Fp), we conclude SL2(Fp) ⊂ G. □

3.2. Elements of order prime to p. We Study some geometric properties of Cartan sub-
groups. Let G be a split Cartan subgroup, and let D be the subgroup of GL2(Fp) defined

by

{(
a 0
0 d

)
; a, d ∈ Fp

}
. There is an invertible matrix B, such that G = BDB−1

Since the matrices in D fix the lines ℓ1 =

〈(
1
0

)〉
, and ℓ2 =

〈(
0
1

)〉
, then the group G

fixed the lines L1 = Bℓ1 and L2 = Bℓ2. We conclude that any split Cartan subgroup fix two
lines in F2

p. Conversly, given two lines, there is a unique split Cartan subgroup such that fix
each line.

Now we explore the geometric characterization of the non-split Cartan subgroup. Let
σ ∈ Fp2 \Fp such that σ2 = ϵ ∈ F×

p . Let C be a nonsplit Cartan subgroup which is conjugate
to the group {(

a ϵb
b a

)}
Let A = B

(
a ϵb
b a

)
B−1 for some matrix B. be a matrix in G. A direct computation

give us that a+ bσ and a− bσ are the eigenvalues of A,

(
1
σ

)
, and

(
−1
σ

)
its corresponding
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eigenvectors. We conclude that the group G fix two lines over Fp2 . Then we conclude that
any nonsplit Cartan subgroup is the stabilizer of two lines defined over Fp2 but not over Fp.

Lemma 3.4. Let A be a non-scalar matrix with order prime to p belongs to a unique Cartan
subgroup.

Proof. Let A ∈ GL2(Fp) be a matrix of order coprime to p nad non-scalar. We have that A
has two distinct eigenvalues over Fp2 (Check!). If this eigenvalues are defined over Fp, then
A stabilize two lines in F2

p. In this case A belong to a split-Cartan group. On the other

hand, if the eigenvalues are in Fp2 , then A has 2 eigenvector in F2
p2 . We conclude that A

fixes two lines defined over Fp2 . In this way we conclude that any matrix with order coprime
to p belong to a Cartan subgroup. □

3.3. Subgroup of PGL2(Fp). Next, we state a classification theorem of subgroups of PGL2(Fp),
whose proof it is tedious. The proof of this theorem will be added as an appendix.

Theorem 3.5. Let H ⊂ PGL2(Fp) be a subgroup of order prime to p. If H is not cyclic or
dihedral, then H is either isomorphic to A4, S4 or A5.

Proof. See section 2.5 in [Ser72]. □

Now we only need to deal with the case of cyclic and dihedral subgroups of GL2(Fp).
The content of the following 2 theorems is precisely that.

Theorem 3.6. Let G be a subgroup of GL2(Fp) such that the image of G in PGL2(Fp) is
cyclic and |G| coprime to p. Then G is contained in a Cartan subgroup.

Proof. Let g ∈ G such that its image ḡ in PGL2(Fp) is a generator of the image of G. We
observe that G = ⟨Z, g⟩. As we saw before, g should be belong in a Cartan subgroup, since
g has order coprime to p. □

Theorem 3.7. Let G be a subgroup of GL2(Fp) such that the image of G in PGL2(Fp) is
a dihedral group with |G| coprime to p. Then G is contained in the normalizer of a Cartan
subgroup

Proof. Since G ⊂ π−1 ◦π(G), it is enough to show the last one is contained in the normalizer
of a Cartan subgroup. Let H be the cyclic subgroup of π(G) or order #ϕ(G)/2. ϕ(G) is
the normalizer of H in ϕ(G). Then ϕ−1(H) is the normalizer of ϕ−1(H) in ϕ−1(ϕ(G)). since
ϕ−1(H) is cyclic coprime to p, then it is contained in a Cartan. Then ϕ−1(ϕ(G)) is contained
in the normalizer of a Cartan. □

In this way we conclude the classification of maximal subgroups of GL2(Fp).
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