Compatible systems, day 2

Héctor Pastén

Pontificia Universidad Católica de Chile

Escuela CIMPA 2025

э

Image: A mathematical states and a mathem

PART 1: Canonical representation

э.

Image: A mathematical states of the state

э

The maps ϵ and α_ℓ

Let K be a number field, m a modulus. Then we have the commutative diagram

We'll use the maps $\epsilon: \mathbb{I}_K o \mathbb{I}_K / U_m o S_m(\mathbb{Q})$ and

$$\alpha_{\ell}: \mathbb{I}_{\mathcal{K}} \to \prod_{\nu \mid \ell} \mathcal{K}_{\nu}^{\times} = (\mathcal{K} \otimes \mathbb{Q}_{\ell})^{\times} = \mathcal{T}(\mathbb{Q}_{\ell}) \to \mathcal{T}_{m}(\mathbb{Q}_{\ell}) \to \mathcal{S}_{m}(\mathbb{Q}_{\ell}).$$

From the diagram, ϵ y α_{ℓ} agree on $K^{\times} \subseteq \mathbb{I}_{K}$.

< □ > < 同 > < 回 > < 回 > < 回 >

The map ϵ_{ℓ}

We have $\epsilon : \mathbb{I}_K \to S_m(\mathbb{Q})$ and $\alpha_\ell : \mathbb{I}_K \to S_m(\mathbb{Q}_\ell)$ that agree on K^{\times} . Thus, $\epsilon(x)\alpha_\ell(x)^{-1}$

is the neutral element of $S_m(\mathbb{Q}_\ell)$ for all $x \in K^{\times}$. So we can define

$$\epsilon_{\ell} = \epsilon \cdot \alpha_{\ell}^{-1} : C_{K} = \mathbb{I}_{K} / K^{\times} \to S_{m}(\mathbb{Q}_{\ell})$$

on the idele class group.

Canonical ℓ -adic representation of G^{ab}

Write $G^{ab} = \text{Gal}(K^{ab}/K)$. Let D_K be the identity component of C_K . Artin's isomorphism from Class Field Theory is

$$C_K/D_K\simeq G^{ab}.$$

The ℓ -adic Lie group $S_m(\mathbb{Q}_\ell)$ is totally disconnected, hence

$$\epsilon_{\ell}(D_{K}) = 1 \in S_{m}(\mathbb{Q}_{\ell}).$$

We get the **canonical** ℓ -adic representation valued on S_m (not on GL(V)):

$$\epsilon_{\ell}: G^{ab} \simeq C_{\mathcal{K}}/D_{\mathcal{K}} \to S_m(\mathbb{Q}_{\ell}).$$

This is unramified away from *m*.

Imagen de Frobenius: sistemas compatibles

For $v \nmid m$ we define $\operatorname{Frob}_{v} \in S_{m}(\mathbb{Q})$ as follows: Choose $f_{v} \in \mathbb{I}_{K}$ a uniformizer at v, and 1 on the other components. Define $\operatorname{Frob}_{v} = \epsilon(f_{v}) \in S_{m}(\mathbb{Q})$.

Class field theory shows that $f_v \in \mathbb{I}_K$ gives the Frobenius class modulo inertia in G^{ab} . Hence $\epsilon_\ell(F_v) \in S_m(\mathbb{Q}_\ell)$ is well-defined when $v \nmid \ell m$.

Theorem

The elements $\operatorname{Frob}_{\nu} \in S_m(\mathbb{Q})$ are well-defined. If $\nu \nmid \ell m$ then $\epsilon_{\ell}(F_{\nu}) = \operatorname{Frob}_{\nu} \in S_m(\mathbb{Q})$, which is independent of ℓ .

The second part holds because $\alpha_{\ell}(f_v) = 1$ para $v \nmid \ell m$. It implies the first. In this sense, $\{\epsilon_{\ell} : G^{ab} \to S_m(\mathbb{Q}_{\ell})\}_{\ell}$ is a strictly compatible rational system whose ramification is contained in m.

<ロト <問ト < 注ト < 注ト = 注

Summary

- $\epsilon : \mathbb{I}_{K} \to S_{m}(\mathbb{Q})$
- $\alpha_{\ell} : \mathbb{I}_{K} \to S_{m}(\mathbb{Q}_{\ell})$
- $\epsilon_{\ell} = \epsilon \cdot \alpha_{\ell}^{-1} : C_{K} = \mathbb{I}_{K} / K^{\times} \to S_{m}(\mathbb{Q}_{\ell})$
- By class field theory $G^{ab} = C_K/D_K$ so we get the canonical representations with values on S_m :

$$\epsilon_\ell: G^{ab} \to S_m(\mathbb{Q}_\ell)$$

unramified away from ℓm .

- $\epsilon_{\ell}(F_{\nu}) = \operatorname{Frob}_{\nu} \in S_m(\mathbb{Q})$ are independent of ℓ .
- We get a system of ℓ -adic representations which is rational and strictly compatible, valued on S_m , not GL(V).

< 日 > < 同 > < 三 > < 三 >

PART 2: Characters

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Let k be a field of characteristic 0 and H and affine commutative algebraic group defined over k. It character group is

$$X(H) = \operatorname{Hom}(H_{k^{\operatorname{alg}}}, \mathbb{G}_{m, k^{\operatorname{alg}}})$$

The Galois group $G_k = \operatorname{Gal}(k^{\operatorname{alg}}/k)$ acts on X(H). We use this with $H = S_m$.

Trace

Given V a k-vector space of finite dimension we have the algebraic group GL(V). For a semisimple representation

$$\phi: H
ightarrow GL(V)$$

its trace is

$$heta_{\phi} = \sum_{\chi} \mathit{n}_{\chi}(\phi) \chi \in \mathbb{Z}[X(H)]$$

according to the decomposition of ϕ into characters. For S_m we have for free that ϕ is semisimple (S_m is of multiplicative type)

Classification

Let $Rep_k(H)$ be the set of isomorphism classes of semisimple representations of H. The next result is a version of Maschke's theorem.

Theorem

The trace $\phi \mapsto \theta_{\phi}$ defines a bijection between $\operatorname{Rep}_k(H)$ and formal sums $\theta \in \mathbb{Z}[X(H)]$ satisfying:

• θ is Galois invariant (i.e. for G_k acting on the $\chi \in X(H)$), and

• the coefficients of θ are non-negative.

Field of definition

Let k'/k be a field extension of characteristic 0.

Theorem

Let
$$\phi \in \operatorname{Rep}_{k'}(S_{m,k'})$$
 that is $\phi : S_{m,k'} \to GL(V)$. TFAE:

(1) ϕ comes from $Rep_k(S_{m,k})$, and

(2) For each $v \nmid m$, the characteristic polynomial of $\phi(\operatorname{Frob}_v)$ is in k[T].

 $(1) \rightarrow (2)$ is clear, and the reciprocal comes from Chebotarev and the fact that the maps $\epsilon_{\ell} : G^{ab} \rightarrow S_m(\mathbb{Q}_{\ell})$ have Zariski dense image.

PART III: Compatible systems

э.

2

• • • • • • • • • • •

ℓ -adic case

Back to a number field K and modulus m. Let V_{ℓ} be a \mathbb{Q}_{ℓ} -vector space of finite dimension and

$$\phi: S_{m,\mathbb{Q}_{\ell}} \to GL(V_{\ell})$$

be a representation of algebraic groups. We get the continuous map

$$\phi: S_m(\mathbb{Q}_\ell) \to GL(V_\ell).$$

Using $\epsilon_\ell: G^{ab} \to S_m(\mathbb{Q}_\ell)$ we obtain an ℓ -adic representation

$$\phi_{\ell} = \phi \circ \epsilon_{\ell} : G^{ab} \to GL(V_{\ell}).$$

ℓ -adic case

Theorem

Properties of ϕ_{ℓ} : $G^{ab} \rightarrow GL(V_{\ell})$:

- (i) It is semisimple
- (ii) Unramified for each $v \nmid \ell m$

(iii) $\phi_{\ell}(F_{\nu}) = \phi(\operatorname{Frob}_{\nu})$ (recall: $\operatorname{Frob}_{\nu} \in S_m(\mathbb{Q})$ is independent of ℓ)

(iv) ϕ_{ℓ} is rational if and only if ϕ comes from $\operatorname{Rep}_{\mathbb{Q}}(S_m)$.

(i): S_m is of multiplicative type.

(ii), (iii): from the theory of the canonical representations of S_m .

(iv): Last theorem of PART II from today.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Global case

We want to "glue" the different ϕ_{ℓ} as ℓ varies, obtaining a compatible system. This is possible if we start with a \mathbb{Q} -vector space V_0 and a representation

$$\phi_0: S_m \to GL(V_0)$$

defined over \mathbb{Q} . Although we dont have " $G^{ab} \to S_m(\mathbb{Q})$ " we still can extend scalars to \mathbb{Q}_ℓ and then reduce to the ℓ -adic case using ϵ_ℓ . We get

$$\phi_{\ell}: G^{ab} \to GL(V_{0,\ell}), \quad V_{o,\ell} = V_0 \otimes \mathbb{Q}_{\ell}.$$

Sistemas compatibles

Here is the construction of $\phi_{\ell}: G^{ab} \to GL(V_{0,\ell})$ as ℓ varies:

Theorem

Properties of the system $\{\phi_{\ell}: G^{ab} \rightarrow GL(V_{0,\ell})\}_{\ell}$:

(1) It is rational, strictly compatible, semisimple.

- (2) Unramified away from m, and $\phi_{0,\ell}(F_v) = \phi_0(\operatorname{Frob}_v)$ for each $v \nmid \ell m$
- (3) there are infinitely many ℓ such that ϕ_{ℓ} is diagonalizable.

The last part is by (the refined version of) Chebotarev.

- 31

PART IV: Introduction to abelian locally algebraic representations.

э

Image: A matched by the second sec

The plan

- Define abelian **locally algebraic** representations. Locally, they come from a morphism of algebraic groups $T \rightarrow GL(V)$.
- We'll se that, if rational, they come from our previous contructions using S_m (recall: $T \to T_m \to S_m$)
- We'll discuss a criterion for being locally algebraic based on the existence of a Hodge–Tate decomposition.

Today: just the first item.

Local case

Let ℓ be a prime and L a finite extension of \mathbb{Q}_{ℓ} . Consider the torus

$$T = \operatorname{Res}_{L/\mathbb{Q}_{\ell}}\mathbb{G}_{m}.$$

Let $\rho: G_L^{ab} = \operatorname{Gal}(L^{ab}/L) \to GL(V)$ be an abelian ℓ -adic representation. By local class field theory we get a map

$$i: L^{\times} \to G_L^{ab}$$

obtaining a map

$$\rho \circ i : L^{\times} = T(\mathbb{Q}_{\ell}) \to GL(V).$$

Definition. ρ is **locally algebraic** if there is a morphism of algebraic groups $r : T \to GL(V)$ such that near $1 \in L^{\times}$ we have $(\rho \circ i)(x) = r(x^{-1})$. **Remark.** Such an r is unique.

Global case

Back to the number field case. Let ℓ be a prime and

$$\rho: G^{ab} \to GL(V_{\ell})$$

an abelian ℓ -adic representation. Let $v|\ell$ be a place of K with decomposition group $D_v \subseteq G^{ab}$. We have $D_v \simeq G_L^{ab}$ with $L = K_v$. The we get

$$\rho_{\mathsf{v}}: \mathsf{G}_{\mathsf{L}}^{\mathsf{ab}} \to \mathsf{D}_{\mathsf{v}} \subseteq \mathsf{G}^{\mathsf{ab}} \to \mathsf{GL}(\mathsf{V})$$

Definition. ρ is locally algebraic if for each such $v|\ell$ the local representation ρ_v is locally algebraic.

Remark. Again, the corresponding maps *r* are unique.

Equivalent definition

By the component embedding and class field theory we have the map

$$i_{\ell}: K_{\ell}^{\times} = \prod_{\nu|\ell} K_{\nu}^{\times} \to \mathbb{I}_{k} \to C_{K} \to G^{ab}.$$

Also, note that $T(\mathbb{Q}_{\ell}) = (K \otimes \mathbb{Q}_{\ell})^{\times} = K_{\ell}^{\times} = \prod_{v \mid \ell} K_{v}^{\times}$.

Theorem

 $\rho: G^{ab} \to GL(V_{\ell})$ is locally algebraic if and only if there is a map of algebraic groups over \mathbb{Q}_{ℓ}

$$f: T_{\mathbb{Q}_{\ell}} \to GL(V_{\ell})$$

such that $\rho \circ i_{\ell}(x) = f(x^{-1}) = f(x)^{-1}$ for all $x \in K_{\ell}^{\times}$ close enough to 1.

Remark. The *f* is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

End of day 2

3

< □ > < □ > < □ > < □ > < □ >