MODULE 3: EXERCISE SHEET 1

These problems are due Sunday, 12 June, 2016. They must be sent to nap@rnta.eu (copy to nickgill@cantab.net) by 10 pm Nepal time.
(1) Let p be an odd prime, and let ζ be a primitive p th root of 1 in \mathbb{C}. Let $E=\mathbb{Q}[\zeta]$ and let $G=\operatorname{Gal}\left(E, \mathbb{F}_{q}\right)$; thus $G=\mathbb{Z} / p \mathbb{Z}$. Let H be the subgroup of index 2 in G. Put $\alpha=\sum_{i \in H} \zeta^{i}$ and $\beta=\sum_{i \in G \backslash H} \zeta^{i}$. Show:
(a) α and β are fixed by H;
(b) if $\sigma \in G \backslash H$, then $\sigma \alpha=\beta, \sigma \beta=\alpha$.

Thus α and β are roots of the polynomial $X^{2}+X+\alpha \beta \in \mathbb{Q}[X]$. Compute $\alpha \beta$ and show that the fixed field of H is $\mathbb{Q}[\sqrt{p}]$ when $p \equiv 1(\bmod 4)$, and $\mathbb{Q}[\sqrt{-p}]$ when $p \equiv 3(\bmod 4)$.
(2) (a) Prove that if g is a group for which $g^{2}=1$ for all $g \in G$, then G is abelian.
(b) Prove that the only non-abelian groups of order 8 are the quaternion group, Q_{8}, and D_{4}.
(3) Let $M=\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ and $E=M[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}]$.
(a) Show that M is Galois over \mathbb{Q} with Galois group the 4 -group $C_{2} \times C_{2}$.
(b) Show that E is Galois over \mathbb{Q} with Galois group Q_{8}.
(4) Let G be the Galois group of $f(X)=X^{4}-2$ over \mathbb{Q}. Thus if θ is the positive fourth root of 2 , then G is the Galois group of $\mathbb{K}: \mathbb{Q}$ where $\mathbb{K}=\mathbb{Q}(\theta, i)$.
(a) Describe all 8 automorphisms in G.
(b) Show that G is isomorphic to the dihedral group D_{4}.
(c) The group G has two normal subgroups N_{1} and N_{2} that are of order 4 and are not cyclic. Write down the elements of N_{1} and N_{2} and verify that the corresponding fixed fields, $\mathbb{K}^{N_{1}}$ and $\mathbb{K}^{N_{2}}$, are normal extensions of \mathbb{Q}.
(5) In this question we generalize Example 3.22 from the notes. Let $f=X^{p}-2 \in \mathbb{Q}[x]$ (where p is a prime), and let E be the splitting field of f over \mathbb{Q}.
(a) Prove that f is irreducible.
(b) Prove that $[E: \mathbb{Q}]=p(p-1)$.
(c) Prove that $\operatorname{Gal}(E, \mathbb{Q})$ has a normal subgroup N of order p, and calculate E^{N}.
(d) Write down a subgroup $H \leq \operatorname{Gal}(E, \mathbb{Q})$ of order $p-1$.
(e) Prove that $\operatorname{Gal}(E, \mathbb{Q})=N \rtimes H$, and describe the action of H on N.
(6) Describe the Galois groups of $f=X^{6}-1$ and $X^{6}+1$ over \mathbb{Q}. Write down the lattice of fields/ groups for each polynomial, identifying which inclusions are normal.
(7) The complex numbers $i \sqrt{3}$ and $1+i \sqrt{3}$ are roots of the quartic $f=X^{4}-2 X^{3}+7 X^{2}-6 X+12$. Does there exist an automorphism σ of the splitting field extension for f over \mathbb{Q} with $\sigma(i \sqrt{3})=1+i \sqrt{3}$?
(8) Describe the transitive subgroups of S_{3}, S_{4} and S_{5}.
(9) Find the Galois group of $X^{4}-2$ over (a) \mathbb{F}_{3}, (b), \mathbb{F}_{7}. (You calculated the Galois group of $X^{4}-2$ over \mathbb{Q} in question (4).)
(10) Find the Galois group of $X^{4}+2$ over (a) \mathbb{Q}, (b) $\mathbb{F}_{3},(c), \mathbb{F}_{5}$.
(11) (Optional extra) Suppose that $L: K$ is an extension with $[L: K]=2$, that every element of L has a square root in L, that every polynomial of odd degree in $K[X]$ has a root in K and that char $K \neq 2$. Let f be an irreducible polynomial in $K[X]$, let $M: L$ be a splitting field extension for f over L, Let $G=\operatorname{Gal}(M: K)$ and let $H=\operatorname{Gal}(M: L)$.
(a) By considering the fixed field of a Sylow 2-subgroup of G, show that $|G|=2^{n}$.
(b) By considering a subgroup of index 2 in H, show that if $n>1$ then there is an irreducible quadratic in $L[X]$.
(c) Show that L is algebraically closed.
(d) Show that the complex numbers are algebraically closed.
(12) (Optional extra) By considering the splitting field of all polynomials of odd degree over \mathbb{F}_{2}, show that the condition char $K \neq 2$ cannot be dropped from the previous question.

