MODULE 3: EXERCISE SHEET 1

These problems are due Sunday, 12 June, 2016. They must be sent to nap@rnta.eu (copy to nickgill@cantab.net) by 10 pm Nepal time.

- (1) Let p be an odd prime, and let ζ be a primitive pth root of 1 in C. Let E = Q[ζ] and let G = Gal(E, F_q); thus G = Z/pZ. Let H be the subgroup of index 2 in G. Put α = Σ_{i∈H} ζⁱ and β = Σ_{i∈G\H} ζⁱ. Show:
 (a) α and β are fixed by H;
 - (b) if $\sigma \in G \setminus H$, then $\sigma \alpha = \beta$, $\sigma \beta = \alpha$.

Thus α and β are roots of the polynomial $X^2 + X + \alpha\beta \in \mathbb{Q}[X]$. Compute $\alpha\beta$ and show that the fixed field of H is $\mathbb{Q}[\sqrt{p}]$ when $p \equiv 1 \pmod{4}$, and $\mathbb{Q}[\sqrt{-p}]$ when $p \equiv 3 \pmod{4}$.

- (2) (a) Prove that if g is a group for which $g^2 = 1$ for all $g \in G$, then G is abelian.
 - (b) Prove that the only non-abelian groups of order 8 are the quaternion group, Q_8 , and D_4 .

(3) Let
$$M = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$
 and $E = M \left\lfloor \sqrt{(\sqrt{2}+2)(\sqrt{3}+3)} \right\rfloor$.

(a) Show that M is Galois over \mathbb{Q} with Galois group the 4-group $C_2 \times C_2$.

- (b) Show that E is Galois over \mathbb{Q} with Galois group Q_8 .
- (4) Let G be the Galois group of $f(X) = X^4 2$ over \mathbb{Q} . Thus if θ is the positive fourth root of 2, then G is the Galois group of $\mathbb{K} : \mathbb{Q}$ where $\mathbb{K} = \mathbb{Q}(\theta, i)$.
 - (a) Describe all 8 automorphisms in G.
 - (b) Show that G is isomorphic to the dihedral group D_4 .
 - (c) The group G has two normal subgroups N_1 and N_2 that are of order 4 and are not cyclic. Write down the elements of N_1 and N_2 and verify that the corresponding fixed fields, \mathbb{K}^{N_1} and \mathbb{K}^{N_2} , are normal extensions of \mathbb{Q} .
- (5) In this question we generalize Example 3.22 from the notes. Let $f = X^p 2 \in \mathbb{Q}[x]$ (where p is a prime), and let E be the splitting field of f over \mathbb{Q} .
 - (a) Prove that f is irreducible.
 - (b) Prove that $[E : \mathbb{Q}] = p(p-1)$.
 - (c) Prove that $\operatorname{Gal}(E, \mathbb{Q})$ has a normal subgroup N of order p, and calculate E^N .
 - (d) Write down a subgroup $H \leq \operatorname{Gal}(E, \mathbb{Q})$ of order p-1.
 - (e) Prove that $\operatorname{Gal}(E, \mathbb{Q}) = N \rtimes H$, and describe the action of H on N.
- (6) Describe the Galois groups of $f = X^6 1$ and $X^6 + 1$ over \mathbb{Q} . Write down the lattice of fields/ groups for each polynomial, identifying which inclusions are normal.
- (7) The complex numbers $i\sqrt{3}$ and $1 + i\sqrt{3}$ are roots of the quartic $f = X^4 2X^3 + 7X^2 6X + 12$. Does there exist an automorphism σ of the splitting field extension for f over \mathbb{Q} with $\sigma(i\sqrt{3}) = 1 + i\sqrt{3}$?
- (8) Describe the transitive subgroups of S_3 , S_4 and S_5 .
- (9) Find the Galois group of $X^4 2$ over (a) \mathbb{F}_3 , (b), \mathbb{F}_7 . (You calculated the Galois group of $X^4 2$ over \mathbb{Q} in question (4).)
- (10) Find the Galois group of $X^4 + 2$ over (a) \mathbb{Q} , (b) \mathbb{F}_3 , (c), \mathbb{F}_5 .
- (11) (Optional extra) Suppose that L: K is an extension with [L:K] = 2, that every element of L has a square root in L, that every polynomial of odd degree in K[X] has a root in K and that $\operatorname{char} K \neq 2$. Let f be an irreducible polynomial in K[X], let M:L be a splitting field extension for f over L, Let $G = \operatorname{Gal}(M:K)$ and let $H = \operatorname{Gal}(M:L)$.
 - (a) By considering the fixed field of a Sylow 2-subgroup of G, show that $|G| = 2^n$.
 - (b) By considering a subgroup of index 2 in H, show that if n > 1 then there is an irreducible quadratic in L[X].
 - (c) Show that L is algebraically closed.
 - (d) Show that the complex numbers are algebraically closed.
- (12) (Optional extra) By considering the splitting field of all polynomials of odd degree over \mathbb{F}_2 , show that the condition char $K \neq 2$ cannot be dropped from the previous question.