Nepal Algebra Project 2017

Tribhuvan University

Module 1 — Problem Set 2 (MW)

These problems are due Tuesday, May 16, 2017 at 10 pm Nepal time. Send your solutions (including your name and email address) to nap@rnta.eu with a copy to michel.waldschmidt@imj-prg.fr

- 1. Prove that a finite subgroup of the multiplicative group of a field is cyclic. Hint: this is Milne exercise 1.3.
- 2. Let G be a cyclic group of order n and let m a positive integer. Prove that there exists a subgroup of G of order m if and only if m divides n. Prove also that in this case, this subgroup of order m is unique and is cyclic.
- **3.** Let *F* be a finite field. Prove that its characteristic *p* is a prime number, that the number of elements of *F* is p^r with some integer $r \ge 1$, and that any subfield of *F* has a number of elements of the form p^s where *s* divides *r*. Prove also that, conversely, for any divisor *s* of *r* there is a unique subfield of *F* with p^s elements.
- 4. What is the degree of the stem field of the polynomials X² + 1 and X² − X + 1
 over Q ?
 - over \mathbb{F}_p for p = 2, 3, 5, 7? For p any prime?

Hint: for which value of p does the multiplicative group \mathbb{F}_p^{\times} contain a subgroup of order 4? of order 6?

- 5. (a) Prove that the polynomial X⁴ + 1 is irreducible over Q.
 (b) Let F_q be a finite field with q elements. Prove that X⁴ + 1 splits in F_q into linear factors if and only if q is congruent to 1 modulo 8.
 Hint: X⁸ 1 = (X⁴ + 1)(X⁴ 1).
 (c) Check that for any prime p, the polynomial X⁴ + 1 is reducible over the finite field F_p = Z/pZ.
 Hint: for any odd integer a, the number a² is congruent to 1 modulo 8.
- 6. Let $\sigma: F_1 \to F_2$ be a homomorphism of fields. Show that the two fields F_1 and F_2 have the same characteristic, hence the same prime field F. Show that σ is a F-homomorphism.
- 7. Let E be a field, F a subfield of E, α₁ and α₂ two elements in E.
 (a) Assume that there exists a F-homomorphism σ : F(α₁) → F(α₂) such that σ(α₁) = α₂. Prove that α₁ is algebraic over F if and only if α₂ is algebraic over F.
 (b) Assume α₁ and α₂ are transcendental over F. Prove that there exists a unique F-homomorphism σ : F(α₁) → F(α₂) such that σ(α₁) = α₂ and that σ is an isomorphism.
 (a) Assume α₁ and α₂ are algebraic over F. Prove that the following conditions are equivalent.
 - (c) Assume α_1 and α_2 are algebraic over F. Prove that the following conditions are equivalent.
 - (i) α_1 and α_2 have the same irreducible polynomial over F.
 - (ii) There exists a *F*-homomorphism $\sigma: F(\alpha_1) \to F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$.
 - If σ exists, then it is unique and is an isomorphism.
- 8. Let E be a field, F a subfield of E, α and β two elements in E algebraic over F of degrees m and n respectively. Assume gcd(m,n) = 1. Prove that the field $F(\alpha, \beta)$ is a finite extension of F of degree mn.
- **9.** Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be the finite field with 2 elements, $E = \mathbb{F}_2(T_1, T_2)$ the field of rational fractions in two variables over \mathbb{F}_2 , F the subfield $\mathbb{F}_2(T_1^2, T_2^2)$.
 - (a) Check that any $\gamma \in E$ satisfies $\gamma^2 \in F$.
 - (b) Show that E/F is a finite extension and compute [E:F].
 - Hint. Compute $[E : \mathbb{F}_2(T_1^2, T_2)]$ and $[\mathbb{F}_2(T_1^2, T_2) : F]$.
 - (c) Deduce that the finite extension E/F is not simple.

http://www.rnta.eu/nap/nap-2017/