Nepal Algebra Project 2017

Tribhuvan University

Module 1 - Problem Set 2 (MW)

These problems are due Tuesday, May 16, 2017 at 10 pm Nepal time.
Send your solutions (including your name and email address) to nap@rnta.eu with a copy to michel.waldschmidt@imj-prg.fr

1. Prove that a finite subgroup of the multiplicative group of a field is cyclic. Hint: this is Milne exercise 1.3.
2. Let G be a cyclic group of order n and let m a positive integer. Prove that there exists a subgroup of G of order m if and only if m divides n. Prove also that in this case, this subgroup of order m is unique and is cyclic.
3. Let F be a finite field. Prove that its characteristic p is a prime number, that the number of elements of F is p^{r} with some integer $r \geq 1$, and that any subfield of F has a number of elements of the form p^{s} where s divides r. Prove also that, conversely, for any divisor s of r there is a unique subfield of F with p^{s} elements.
4. What is the degree of the stem field of the polynomials $X^{2}+1$ and $X^{2}-X+1$

- over \mathbb{Q} ?
\bullet over \mathbb{F}_{p} for $p=2,3,5,7$? For p any prime?
Hint: for which value of p does the multiplicative group \mathbb{F}_{p}^{\times}contain a subgroup of order 4 ? of order 6 ?

5. (a) Prove that the polynomial $X^{4}+1$ is irreducible over \mathbb{Q}.
(b) Let F_{q} be a finite field with q elements. Prove that $X^{4}+1$ splits in F_{q} into linear factors if and only if q is congruent to 1 modulo 8 .
Hint: $X^{8}-1=\left(X^{4}+1\right)\left(X^{4}-1\right)$.
(c) Check that for any prime p, the polynomial $X^{4}+1$ is reducible over the finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$.

Hint: for any odd integer a, the number a^{2} is congruent to 1 modulo 8.
6. Let $\sigma: F_{1} \rightarrow F_{2}$ be a homomorphism of fields. Show that the two fields F_{1} and F_{2} have the same characteristic, hence the same prime field F. Show that σ is a F-homomorphism.
7. Let E be a field, F a subfield of E, α_{1} and α_{2} two elements in E.
(a) Assume that there exists a F-homomorphism $\sigma: F\left(\alpha_{1}\right) \rightarrow F\left(\alpha_{2}\right)$ such that $\sigma\left(\alpha_{1}\right)=\alpha_{2}$. Prove that α_{1} is algebraic over F if and only if α_{2} is algebraic over F.
(b) Assume α_{1} and α_{2} are transcendental over F. Prove that there exists a unique F-homomorphism $\sigma: F\left(\alpha_{1}\right) \rightarrow$ $F\left(\alpha_{2}\right)$ such that $\sigma\left(\alpha_{1}\right)=\alpha_{2}$ and that σ is an isomorphism.
(c) Assume α_{1} and α_{2} are algebraic over F. Prove that the following conditions are equivalent.
(i) α_{1} and α_{2} have the same irreducible polynomial over F.
(ii) There exists a F-homomorphism $\sigma: F\left(\alpha_{1}\right) \rightarrow F\left(\alpha_{2}\right)$ such that $\sigma\left(\alpha_{1}\right)=\alpha_{2}$.

If σ exists, then it is unique and is an isomorphism.
8. Let E be a field, F a subfield of E, α and β two elements in E algebraic over F of degrees m and n respectively. Assume $\operatorname{gcd}(m, n)=1$. Prove that the field $F(\alpha, \beta)$ is a finite extension of F of degree $m n$.
9. Let $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ be the finite field with 2 elements, $E=\mathbb{F}_{2}\left(T_{1}, T_{2}\right)$ the field of rational fractions in two variables over \mathbb{F}_{2}, F the subfield $\mathbb{F}_{2}\left(T_{1}^{2}, T_{2}^{2}\right)$.
(a) Check that any $\gamma \in E$ satisfies $\gamma^{2} \in F$.
(b) Show that E / F is a finite extension and compute $[E: F]$.

Hint. Compute $\left[E: \mathbb{F}_{2}\left(T_{1}^{2}, T_{2}\right)\right]$ and $\left[\mathbb{F}_{2}\left(T_{1}^{2}, T_{2}\right): F\right]$.
(c) Deduce that the finite extension E / F is not simple.

