Solve the maximum number of the problems (briefly and explaining your answers). Write your answers in the appropriate spaces. NO ADDED SHEETS WILL BE ACCEPTED. 1 Esercise $=5$ points. Exam length: 2 hours. No question allowed during the first hour and during the last 20 minutes.

signature	1	2	3	4	5	6	7	8	TOT.	
$\ldots \ldots \ldots$.										
$\ldots \ldots \ldots$.										

1.

(a) Find the minimal polynomial of $2 \cdot 2^{1 / 3}+3$ over \mathbf{Q}, and prove that it is the minimal polynomial.
(b) Prove that $\mathbf{Q}\left(2 \cdot 2^{1 / 3}+2\right)=\mathbf{Q}\left(2^{1 / 3}\right)$ and that $\mathbf{Q}\left(2^{1 / 3}\right) \neq \mathbf{Q}(\sqrt{2})$
2. Let R be a domain (i.e. a commutative ring without zero divisors) and suppose that F is a field contained in R (as a subring). Prove that if $\operatorname{dim}_{F} R$ is finite then R is a field. Show that the condition that $\operatorname{dim}_{F} R<\infty$ is necessary.
3. Prove the theorem about transitivity of algebraic extensions: If $F \subseteq K \subseteq L$ are field extensions such that K is algebraic over F and L is algebraic over K, then L is algebraic over F.
4. Describe all elements of the Galois group of the polynomial $x^{3}-3 \in \mathbf{Q}[x]$.
5. Give the definition of contructible number and determine which among $2^{1 / 3}, 8^{1 / 4}$ and $\sqrt{3}+\sqrt{11}$ is constructible.
6. State in full generality the fundamental correspondence Theorem of Galois Theory.
7. Given a finite field $\mathbf{F}_{q}\left(q=p^{n}\right)$, consider $\gamma \in \mathbf{F}_{q}^{*}$ and let $f_{\gamma}(X) \in \mathbf{F}_{p}[X]$ be its minimal polynomial over \mathbf{F}_{p}.
a) Show that if $m=\operatorname{deg} f_{\gamma}$, then $\gamma, \gamma^{p}, \gamma^{p^{2}}, \ldots, \gamma^{p^{m-1}}$ are exactly all the root of $f_{\gamma}(X)$.
b) Show that if γ is a generator of the multiplicative group \mathbf{F}_{q}^{*}, then all the root of f_{γ} are also generators.
8.
a) Show that for any rational number q, the real number $\cos (q \pi)$ is algebraic. Hint: consider $e^{i \pi q}$.
b) Determine the minimal polynomial of $\cos (\pi / 5)$.

