AL310 16/17 (Galois Theory)

NAP special session

Kirtipur, September 12, 2017.

signature	1	2	3	4	5	6	7	8	TOT.	

1. (a) Find the minimal polynomial of $2 \cdot 2^{1/3} + 3$ over **Q**, and prove that it is the minimal polynomial.

(b) Prove that $\mathbf{Q}(2 \cdot 2^{1/3} + 2) = \mathbf{Q}(2^{1/3})$ and that $\mathbf{Q}(2^{1/3}) \neq \mathbf{Q}(\sqrt{2})$

2. Let R be a domain (i.e. a commutative ring without zero divisors) and suppose that F is a field contained in R (as a subring). Prove that if $\dim_F R$ is finite then R is a field. Show that the condition that $\dim_F R < \infty$ is necessary.

3. Prove the theorem about transitivity of algebraic extensions: If $F \subseteq K \subseteq L$ are field extensions such that K is algebraic over F and L is algebraic over F.

4. Describe all elements of the Galois group of the polynomial $x^3 - 3 \in \mathbf{Q}[x]$.

5. Give the definition of contructible number and determine which among $2^{1/3}$, $8^{1/4}$ and $\sqrt{3} + \sqrt{11}$ is constructible.

6. State in full generality the fundamental correspondence Theorem of Galois Theory.

- 7. Given a finite field \mathbf{F}_q $(q = p^n)$, consider $\gamma \in \mathbf{F}_q^*$ and let $f_{\gamma}(X) \in \mathbf{F}_p[X]$ be its minimal polynomial over \mathbf{F}_p . a) Show that if $m = \deg f_{\gamma}$, then $\gamma, \gamma^p, \gamma^{p^2}, \ldots, \gamma^{p^{m-1}}$ are exactly all the root of $f_{\gamma}(X)$.
 - b) Show that if γ is a generator of the multiplicative group \mathbf{F}_q^* , then all the root of f_{γ} are also generators.

8.

- a) Show that for any rational number q, the real number $\cos(q\pi)$ is algebraic.
- Hint: consider $e^{i\pi q}$.

b) Determine the minimal polynomial of $\cos(\pi/5)$.