${\bf F}$ field.

Recall the following basic fact from Module 1:

• Let $f \in \mathbf{F}[x]$ be an irreducible polynomial. Then there exists a field extension $\mathbf{F} \subset \mathbf{K}$ with the property that f has a zero in \mathbf{K} .

•
$$\mathbf{K} \cong \mathbf{F}[x]/(f)$$
.

The following proposition was stated and illustrated.

Proposition. (Milne, Prop.2.4) For every polynomial $f \in \mathbf{F}[x]$, there exists a field extension $\mathbf{F} \subset \mathbf{K}$ with the property that (a) f, as a polynomial in $\mathbf{K}[x]$, decomposes as $f(x) = c(x - \alpha_1) \dots (x - \alpha_m)$, with $\alpha_i \in \mathbf{K}, c \in \mathbf{K}$; (b) $\mathbf{F}(\alpha_1, \dots, \alpha_m) = \mathbf{K}$.

In addition,

(c) the field \mathbf{K} is unique up to \mathbf{F} -isomorphism;

(d) If $\deg(f) = n$, then $[\mathbf{K} : \mathbf{F}] \le n!$.

By definition, \mathbf{K} is a splitting field of f over \mathbf{F} . Note that it depends both on f and on \mathbf{F} .

Examples:

Denote by \mathbf{F}_f a splitting field of f over \mathbf{F} .

$$\begin{split} f &= X^2 - 2, \ \mathbf{Q}_f = \mathbf{Q}(\sqrt{2}); \\ f &= X^2 - 2, \ \mathbf{R}_f = \mathbf{R}; \\ f &= X^2 + 1, \ \mathbf{Q}_f = \mathbf{Q}(i); \\ f &= X^2 + 1, \ \mathbf{R}_f = \mathbf{R}(i) = \mathbf{C}; \\ f &= X^3 - 1, \ \mathbf{Q}_f = \mathbf{Q}(\omega), \ \text{where} \ \omega = e^{i2\pi/3}; \\ f &= X^3 - 1, \ \mathbf{R}_f = \mathbf{R}(\omega) = \mathbf{C}; \\ f &= X^3 - 2, \ \mathbf{Q}_f = \mathbf{Q}(\sqrt[3]{2}, \omega). \end{split}$$

Excercise. Consider the real number $\alpha = \sqrt{2} + \sqrt[3]{2}$. Determine the minimal polynomial of α in $\mathbf{Q}[x]$.