NAProject 2018 Module IV: Computing Galois Groups Lectures 7: Wednesday July 4, 2018

Theorem. We fix a prime p. For every $q = p^n$, the extension $\mathbb{F}_q/\mathbb{F}_p$ is Galois, and

$$\operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p) = \langle \phi \rangle,$$

where ϕ is the Frobenius automorphism, $\phi(x) = x^p$, all $x \in \mathbb{F}_q$.

The Galois correspondence in the case of finite fields.

We fix a prime p and we consider the finite field F_{p^n} , with $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle \phi \rangle$ cyclic or order n.

- For every divisor d of n there is a unique subfield of \mathbb{F}_{p^n} of cardinality p^d .
- For every divisor d of n there is a unique subgroup of $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ of order $\frac{n}{d}$, namely $G_d = \langle \phi^d \rangle$.
- There is a one-to-one correspondence

{subgroups of $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ } \leftrightarrow { subfields of \mathbb{F}_{p^n} } $G_d \leftrightarrow \mathbb{F}_{p^d}$,

since $x \in \mathbb{F}_{p^n} \Leftrightarrow x^{p^d} = x \Leftrightarrow \phi^d(x) = x$.

Example: $K = \mathbb{F}_{3^6}$, the field with 729 elements.

- (i) We find all the subfields of K. Since $K \simeq \mathbb{F}_{3^6}$, any subfield of K is of the form \mathbb{F}_{3^n} with n|6. Thus, the subfields of K are $\mathbb{F}_3, \mathbb{F}_9, \mathbb{F}_{27}$ and K itself.
- (ii) The Galois group of F/\mathbb{F}_3 is $G_6 = \langle \phi \rangle$, with $\phi(X) = x^3$ for all $x \in \mathbb{F}_{3^6}$, with subgroups G_2 of order 3 and G_3 of order 2. The Galois correspondence between the subgroups of G_6 , with $\phi(X) = x^3$ and the subfields of K is $G_6 \leftrightarrow \mathbb{F}_3, G_2 \leftrightarrow \mathbb{F}_{p^2}, G_3 \leftrightarrow \mathbb{F}_{p^3}, \mathrm{Id.} \leftrightarrow \mathbb{F}_{p^6}$.
- (iii) We compute how many elements $\alpha \in K$ satisfy $K = \mathbb{F}_3[\alpha]$. We know that $\alpha \in K$ satisfies $K = \mathbb{F}_3[\alpha]$ if and only if α is en K and α is in no proper subfield of K. Since $\mathbb{F}_9 \cap \mathbb{F}_{27} = \mathbb{F}_3$, there are 729 27 9 + 3 = 696 such α .
- (iv) We also know many irreducible polynomials of degree 6 there are in $\mathbb{F}_3[X]$. Since the set of zeros of these polynomials has cardinal 696, there are $\frac{696}{6} = 116$ irreducible polynomials of degree 6 in en $\mathbb{F}_3[X]$. For each such polynomial f, it is $\mathbb{F}_{3^6} = \mathbb{F}_3[X]/(f)$.