Nepal Algebra Project 2018

Tribhuvan University

Module 3 - Problem Set 2 (MW)

1. Let $t \in \mathbb{Z}$. Consider the polynomial $f(X)=X^{4}-t X^{3}-6 X^{2}+t X+1$.
(a) Let α be a root of f in a splitting field over \mathbb{Q}. Check that $\frac{\alpha-1}{\alpha+1}$ is also a root of f in the field $E=\mathbb{Q}(\alpha)$.
(b) What is the order of the matrix $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ in the group $\mathrm{GL}_{2}(\mathbb{Q})$ of regular 2×2 matrices with coefficients in \mathbb{Q} ?
(c) Find the two other roots of f in E.
(d) Check that the polynomial f is reducible over \mathbb{Q} if and only if t is either 0 , or 3 , or -3 .

For each of the three values $t=0, t=3$ and $t=-3$, write the four roots of f. What is the group $\operatorname{Aut}(E / \mathbb{Q})$? What is the Galois group of f over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_{4} ? Is-it transitive?
(e) Assume $t \notin\{0,3,-3\}$. What is the $\operatorname{group} \operatorname{Aut}(E / \mathbb{Q})$? What is the Galois group of f over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_{4} ? Is-it transitive?
Which are the subfields of E ? For each of them give the irreducible polynomial of an element γ such that this subfield if $\mathbb{Q}(\gamma)$. Is $\mathbb{Q}(\gamma)$ a Galois extension of \mathbb{Q} ? If so, what is its Galois group?
2. Let $m \in \mathbb{Z}$.
(a) Check that the polynomial $X^{4}-m$ is reducible over \mathbb{Q} if and only if either m is a square in \mathbb{Z} or $m=-4 k^{4}$ with $k \in \mathbb{Z}$.

When the polynomial $X^{4}-m$ is reducible over \mathbb{Q}, what is its splitting field over \mathbb{Q} ? What is its Galois group over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_{4} ? Is-it transitive?
(b) Assume $m>0$ is not a square in \mathbb{Z}. Let E be the splitting field over \mathbb{Q} of $X^{4}-m$.

Check that E is also the splitting field over \mathbb{Q} of $X^{4}+4 m$.
Hint: compute the irreducible polynomials of $(1+i) \sqrt[4]{m}$ and $(1-i) \sqrt[4]{m}$.
What are the Galois group over \mathbb{Q} of the polynomials $X^{4}-m$ and $X^{4}+4 m$ as subgroups of the symmetric group \mathfrak{S}_{4} ? Are they transitive?
Give the list of subfields of E. For each of them, give an element γ such that this field is $\mathbb{Q}(\gamma)$. Give the Galois groups of E over $\mathbb{Q}(\gamma)$, and also of $\mathbb{Q}(\gamma)$ over \mathbb{Q} when this extension is Galois.
3. Let F be a field and f an irreducible separable monic polynomial of degree 3 with coefficients in F. Let E be a splitting field of f over F, let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of f in E and let G_{f} be the Galois group of f over F. Set

$$
\delta=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right) .
$$

(a) For a permutation $\sigma \in \mathfrak{S}_{3}$, set

$$
\delta_{\sigma}=\left(\alpha_{\sigma(2)}-\alpha_{\sigma(1)}\right)\left(\alpha_{\sigma(3)}-\alpha_{\sigma(1)}\right)\left(\alpha_{\sigma(3)}-\alpha_{\sigma(2)}\right) .
$$

Check

$$
\delta_{\sigma}= \begin{cases}-\delta & \text { if } \sigma \text { is a transposition }(1,2),(1,3),(2,3) \\ \delta & \text { if } \sigma \text { belongs to the cyclic subgroup } C_{3}=\{1,(1,2,3),(1,3,2)\} \text { of } \mathfrak{S}_{3} .\end{cases}
$$

(b) Deduce that $\Delta=\delta^{2}$ belongs to F.
(c) Check that G_{f} contains a transposition if and only if Δ is not a square in F.
(d) Deduce that G_{f} is

- the cyclic group C_{3} of order 3 if Δ is a square in F,
- the symmetric group \mathfrak{S}_{3} of order 6 if Δ is not a square in F.

4.

(a) For each of the prime numbers $p=3,5,7,11,13,17$, is the regular polygon with p sides constructible or not?
(b) Using

$$
641=5^{4}+2^{4}=5 \cdot 2^{7}+1,
$$

check that the Fermat number $F_{5}=2^{2^{5}}+1$ is divisible by 641 .
Hint. What is the inverse of 5^{4} in the field \mathbb{F}_{641} ?

