NAP 2019 - MODULE V - CLASS \#5 July 22, 2019

Lea Terracini

- We solved exercises 12.1 and 12.11 in Garling's book.
- Assume $\operatorname{char}(K) \neq 2$. For a polynomial $f \in K[X]$, with a splitting field extension L / K, we defined the discriminant Δ, and showed that
$-\Delta \neq 0$ if and only if f is separable.
- if f is separable then $\operatorname{Gal}(L / K) \subseteq A_{n}$ if and only if Δ as a square root in K.
- We showed that the discriminant can be computed as a determinant of a symmetric $n \times n$ matrix with coefficients in K, which are symmetric polynomials in the roots of f and thus polynomials in the coefficients of $f(X)$.
- in particular for a cubic polynomial $f(X)=X^{3}+a X^{2}+b X+c$ we get

$$
\Delta=a^{2} b^{2}+18 a b c-4 b^{3}-4 a^{3} c-27 c^{2}
$$

- By a change of variables, every cubic polynomial can be transformed to a polynomial of the form $f(X)=X^{3}+p X+q$. Then $\Delta=-4 p^{3}-27 q^{2}$ (there is a misprint on Garling's book!).
- Let $f(X)$ be an irreducible cubic polynomial in $K[X](\operatorname{char}(K) \neq 2,3)$, L / K be a splitting field extension for $f(X), G=\operatorname{Gal}(L / K)$. Then [$L: K$] can be 3 or 6 , so that G can be either A_{3} or S_{3}. More precisely we have the following:

Theorem

- If Δ has a square root in K then $[L: K]=3$ and $G=A_{3}$.
- If Δ has not a square root in K then $[L: K]=6$ and $G=S_{3}$.

In both case we can solve f by radicals on K if and only if we can solve it on $K(\sqrt{\Delta})$.

