Topics:
Computing Galois Groups, When is Gf contained in An? When is Gf transitive? Polynomials of degree at most three, Quartic poly-nomials, Examples of polynomials with Sp as Galois group over Q, Finite fields, Computing Galois groups over Q
[Homeworks]
Monday, July 3, 2017
(also download from here)
-
Construction of finite fields:
-
For any prime $p$ one has $\mathbf{F}_p[x]/(f)$, with $f$ irreducible in $\mathbf{F}_p[x]$.
-
Proposition $1$.
-
the cardinality of a finite field $\mathbf{K}$ of characteristic $p$ is $q=p^n$.
-
$\mathbf{K}$ contains $\mathbf{F}_p$
-
the additive group $(\mathbf{K},+)$ is isomorphic to $(\mathbf{Z}/p\mathbf{Z} $ $ \times \ldots \times $ $\mathbf{Z}/p\mathbf{Z},+)$
-
the multiplicative group $(\mathbf{K}^*,\cdot )$ of a finite field is cyclic.
-
Theorem $2$. For every prime power $q=p^n$ there exists a field with $q$ elements. It is of the form $\mathbf{F}[x]/(f)$ with $f$ an irreducible polynomial in $\mathbf{F}_p[X]$ of degree $n$.
-
Theorem $3$.
Every finite field of $q$ elements is a splitting field of $x^q-x$ over $\mathbf{F}_p$. Therefore all finite fields with $q$ elements are isomorphic. Notation $\mathbf{F}_q$.
-
Examples.
$\mathbf{F}_4$, $\mathbf{F}_5[\sqrt 2]$, $\mathbf{F}_9=$ $\mathbf{F}_3[i]=$ $\mathbf{F}_3[x]/(x^2+1)=$ $\mathbf{F}_3[i+1]$
-
Theorem $4$.
$Aut(\mathbf{F}_q) =\langle \phi\rangle$, where $\phi$ denotes the Frobenius automorphism $\phi(x)=x^p$.
Tuesday, July 4, 2017
(also download from here)
-
Subfields.
-
Lemma $1$.
Let $p$ be a prime. Let $f\in\mathbf{F}_p[x]$ be an irreducible polynomial of degree $n$. Let $\alpha$ be a zero of $f$. Then
-
$\alpha^{p^n}=\alpha$;
- $n$ is the smallest positive integer for which (a) holds.
-
Proposition $2$.
Let $f\in\mathbf{F}_p[x]$ be an irreducible polynomial of degree $n$. Let $\alpha$ be a zero of $f$. Then
$f(x)=$ $(x-\alpha)$ $(x-\alpha^p)$ $\ldots$ $(x-\alpha^{p^{n-1}}).$
-
Corollary $3$.
Every finite extension of a finite field is a Galois extension.
-
Theorem $4$.
$Aut(\mathbf{F}_{p^n}) $ is a cyclic group isomorphic to $\mathbf{Z}/n\mathbf{Z}$, generated by the Frobenius automorphism $\phi$.
-
Proposition $5$.
-
If $\mathbf{K}$ is a subfield of $\mathbf{F}_{p^n}$, then the cardinality of $\mathbf{K}$ is equal to $p^d$, for some divisor $d$ of $n$.
-
For every divisor $d$ of $n$, there exists a unique subfield of cardinality $p^d$.
-
The Galois correspondence in the case of finite fields:
Fix $p$ prime and the finite field $ \mathbf{F}_{p^n}$.
$Aut( \mathbf{F}_{p^n})= $ $\langle \phi\rangle= $
$Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)\cong$ $\mathbf{Z}/n\mathbf{Z}$.
For every $d$ divisor of $n$, there is a unique subfield $\mathbf{F}_{p^d}\subset \mathbf{F}_{p^n}$.
For every $d$ divisor of $n$, there is a unique subgroup $G_d$ of $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ of index $d$, namely the subgroup generated by $ \phi^d$.
One has $ \mathbf{F}_{p^d} = $ $\{x\in \mathbf{F}_{p^n} $ $~|~ g(x)=x$, $\forall g\in G_d\}$.
Conversely $G_d= \{$ $ g\in Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ $~|~g(x)=x$, $~\forall x\in \mathbf{F}_{p^d} \}$.
Example: $\mathbf{F}_{3^4}$.
-
Excercise $1$.
-
Find an irreducible polynomial $f$ of degree $2$ in $\mathbf{F}_3[x]$. Then $\mathbf{F}_9=\mathbf{F}_3[x]/(f)$.
-
Which elements of $\mathbf{F}_9$ are generators of its multiplicative group $\mathbf{F}_9^*$?
-
Which elements of $ \mathbf{F}_9$ have square roots in $\mathbf{F}_9$?
-
Prove that the product of all elements of $\mathbf{F}_9^*$ is 2.
-
Show that the additive group of $\mathbf{F}_9$ is not cyclic.
-
Excercise $2$.
-
Draw the Hasse diagrams of the subfields of each $\mathbf{F}_{2^k}$ for $k=1,..,6.$.
Solution of Lecture 2
download from here
Thursday, July 6, 2017
(also download from here)
-
Proposition $1$ The group $G_f$ permutes the roots of $f$:
if $\sigma\in G_f$ and $\alpha_i \in Zeros(f)$, then $\sigma(\alpha_i)= \alpha_j$ $\in Zeros(f).$
There is a homomorphism $\Theta\colon G_f\to S_n,$ where $S_n$ is the permutation group of $n$ elements. The homomorphism $\Theta$ is injective. Hence $\#G_f$ divides $n!$.
-
Proposition $f\in\mathbf{K}[x]$ separable. Then $G_f\cong H\subset S_n$, with $H$ transitive on $\{1,2,\ldots,n\}$, if and only if $f$ is irreducible over $\mathbf{K}$.
-
Criterion. $f\in\mathbf{K}[x]$ separable, $char(\mathbf{K})\not=2$. Then $G_f\cong A_n$ if and only if $Disc(f)$ is a square in $\mathbf{K}$,
where $Disc(f):=$ $\prod_{i < j}$ $(\alpha_i-\alpha_j)^2\in\mathbf{K}$ (it is $G_f$-invariant).
-
Example $1$. $\mathbf{K}=\mathbf{Q}$, $f(x)=$ $x^4-4=$ $(x^2+2)$ $(x^2-2)$;
$\mathbf{K}_f=\mathbf{Q} (\sqrt 2,i\sqrt 2)$, $G_f\cong \mathbf{Z}/2\mathbf{Z}$$\times \mathbf{Z}/2\mathbf{Z}$.
-
Example $2$. $\mathbf{K}=\mathbf{Q}$, $f(x)=x^4-2$;
$\mathbf{K}_f=\mathbf{Q}({\root 4 \of 2},i{\root 4 \of 2})$, $G_f\cong D_4$.
-
Example $3$. (degree $2$ case).
$f\in\mathbf{K}[x]$ separable of degree 2; $G_f\subset S_2=$$\{id,(12)\}$.
-
$G_f=id$ $\Leftrightarrow[\mathbf{K}_f:\mathbf{K}]$ $=1$ $\Leftrightarrow \mathbf{K}_f=K$ if and only if $f$ factors in $\mathbf{K}$.
-
$G_f=S_2 \Leftrightarrow$ $[\mathbf{K}_f:\mathbf{K}]$ $=2$ if and only if $K_f$ is a quadratic extension of $\mathbf{K}$ if and only if $f$ is irreducible over $\mathbf{K}.$
-
Example $4$. (degree $3$ case). $f\in\mathbf{K}[x]$ separable of degree 3; $G_f\subset S_3$ $=$ $\{$$id,(12)$,$(13,(23)$,$(123),(132)$$\}$;
possible subgroups (up to conjugation): id, $S_3$, $\{id,(12)\}$, $\{ id,(123),(132)\}$.
-
$G_f=id$ $\Leftrightarrow$ $[\mathbf{K}_f:\mathbf{K}]=1$ if and only if $f$ factors in $\mathbf{K}$.
-
$G_f=S_3$ $\Rightarrow f$ is irreducible.
- $G_f$ has order $2 \Rightarrow f$ is a product of a linear and a quadratic polynomial in $\mathbf{K}[X]$.
-
$G_f$ has order $3$ and hence $G_f=A_3 \Rightarrow f$ is irreducible.
If $char(\mathbf{K})\not=2$, we can distinguish between cases (b) and (d) using the discriminant. The Galois group $G_f$ is contained in $A_3$ if and only if $Disc(f)$ is a square in $\mathbf{K}$.
-
We have done few exercises from the file
Excercises $1$
."
Solution of Lecture 3:
download from here
Table of Field $\mathbf{F}_{16}:$
download from here
Monday, July 10, 2017
(also download from here)
-
$\mathbf{K}$ a field, $f\in \mathbf{K}[x]$ a separable monic polynomial, $\mathbf{K}_f=$$\mathbf{K}[\alpha_1,\ldots,\alpha_n]$ the splitting field of $f$, $\{\alpha_i\}_i$ zeros of $f$, $G_f:=$$Gal(\mathbf{K}_f/\mathbf{K})$$\subset S_n$ the Galois group of $f$.
-
Criterion. Assume $char(\mathbf{K})\not=2$. Then $G_f\subset A_n$ $\Leftrightarrow$ $Disc(f)$ is a square in $\mathbf{K}$.
-
Consequence. $f\in \mathbf{K}[x]$, separable monic polynomial of
degree 3, irreducible over $\mathbf{K}$.
Then $G_f=A_3$, if $Disc(f)$ is a square in $\mathbf{K}$, and $G_f=S_3$,
if $Disc(f)$ is not a square in $\mathbf{K}$.
-
The degree 4 case.
$f\in \mathbf{K}[x]$, separable monic polynomial of degree 4.
-
If $f$ is divisible by a degree $1$ factor, we are back in the degree $3$ case.
-
If $f$ factors as the product of two irreducible polynomials $g$, $h$ of degree $2$, then either $\mathbf{K}_g=\mathbf{K}_h$$=\mathbf{K}_f$ and $G_f\cong C_2$, or $\mathbf{K}_g\not=\mathbf{K}_h$ , $\mathbf{K}_f=\mathbf{K}_g\mathbf{K}_h$ and $G_f\cong C_2\times C_2$.
-
If $f$ is irreducible, then $G_f$ is isomorphic to a transitive subgroup of $S_4$. These are $S_4$, $A_4$, $D_4$, $V_4$, $C_4$.
-
The group $S_4$ and its transitive subgroups in detail.
-
The cubic resolvent $g$ of $f$: its zeros $\alpha$, $\beta$, $\gamma$ are fixed by $G_f\cap V_4$, hence $g\in\mathbf{K}[x]$.
-
Excercises. Computation of the Galois group of the following polynomials:
- $x^2-101$;
- $x^3-5x^2$$+6$;
- $x^3-5x$$-5$;
- $x^3-3x$$+1$;
- $x^3-1$;
- $x^3-3$;
- $x^3-2x^2$$+3x+5$;
Resultants
(download from here)
Tuesday, July 11, 2017
(also download from here)
-
$f\in \mathbf{K}[x]$, separable monic polynomial of degree $4$
$g$ the cubic resolvent of $f$.
$f$ separable $\Rightarrow$ $g$ separable;
$disc(f)$$=$$disc(g)$.
-
Proposition. $\mathbf{K}[\alpha,\beta,\gamma]$ is the fixed field of $G_f\cap V_4$.
-
Classification of the Galois groups of irreducible separable monic polynomials of
degree 4, by means of the cubic resolvent:
-
$g$ irred., $disc(g)$ not square, $G_g=S_3 $, then $G_f=S_4$;
-
$g$ irred., $disc(g)$ square, $G_g=A_3 $, then $G_f=A_4$;
-
$g=$$h_1\cdot h_2$, with $deg(h_i)$$=i$, $disc(g)$ not square, $G_g=C_2 $, then $G_f=D_4$$\Leftrightarrow f$ irred. in $\mathbf{K}_g$;
-
$g=$$h_1\cdot h_2$, with $deg(h_i)$$=i$, $disc(g)$ not square, $G_g=C_2 $, then $G_f=C_4$$\Leftrightarrow f$ red. in $\mathbf{K}_g$;
-
$g $ completely red., $disc(g)$ not square, $G_g=id $, then $G_f=V_4$.
-
Construction of an irreducible polynomial of degree $p$, with Galois group $G_f=S_p$, for every prime $p$.
-
Lemma. Let $H$ be a subgroup of $S_p$. If $H$ contains a $2$-cycle and a $p$-cycle, then $H=S_p$.
-
We will construct a polynomial $f\in\mathbf{Q}[x]$, irreducible of degree $p$, with $p-2$ real roots and $2$ complex conjugate roots.
-
Excercises. Computation of the Galois group of the following irreducible polynomials of degree $4$:
- $x^4$$-x$$-1$ (type $S_4$);
- $x^4$$+2x$$+2$ (type $S_4$);
- $x^4$$+8x$$+12$ (type $A_4$);
- $x^4$$+36x$$+63$ (type $V_4$);
- $x^4$$-10x^2$$+5$ (type $C_4$);
- $x^4$$+3x$$+3$ (type $D_4$);
Thursday, July 13, 2017
(also download from here)
-
Construction of an irreducible polynomial of degree $p$, with Galois group $G_f=S_p$, for every prime~$p$.
-
A method to compute Galois groups $Gal(\mathbf{K}_f/\mathbf{Q}).$ By reducing $f$ modulo various primes $p$, one computes
automorphisms $\sigma_p$ in the Galois group $G_f\subset S_n$ up to conjugacy in $G_f$. The cycle decomposition
of $\sigma_p$ is determined by the factorization of the polynomial $f$ modulo $p$. This method can be used to show that the Galois group $G_f$ is
large
. To show that it is small
, other method are needed (see Milne, p.55). The method was illustrated by a computer presentation using PARI/GP.
-
Excercises.
-
Let $\mathbf{K}$ be a field of $char\not=2$. If $u,v\in\mathbf{K}^*$, then $\mathbf{K}(\sqrt u)=$$\mathbf{K}(\sqrt v)$ if and only if $u/v$ is a square in $\mathbf{K}^*$.
-
Compute the Galois group of $\mathbf{Q}_f$, where $f(x)=$$X^4+5x+5$ (irreducible over $\mathbf{Q}$).
-
Fix $\alpha=$$\sqrt{2-\sqrt3}$.
-
Show that $\mathbf{Q}(\alpha)$ is a normal extension of $\mathbf{Q}$.
-
Compute its Galois group.
-
Let $f$ be the polynomial $x^4-2$. Compute the Galois group of $\mathbf{K}_f$, when $\mathbf{K}=\mathbf{Q}$, $\mathbf{R}$, $\mathbf{C}$, $\mathbf{Q}(\sqrt 2)$, $\mathbf{Q}(\root4\of2)$.