Topics: Algebraically closed fields, Maps from simple extensions, Splitting fields, Multiple roots, Groups of automorphisms of fields, Separable, normal, and Galois extensions, The fundamental theorem of Galois theory
[Homeworks]
Monday, May 21, 2018
(also download from here)
-
$\mathbf{F}$ field.
-
Recall the following basic fact from Module 1:
-
Let $f\in \mathbf{F}[x]$ be an irreducible polynomial. Then there exists a field extension $\mathbf{F}\subset \mathbf{K}$ with the property that $f$ has a zero in $\mathbf{K}$.
-
$\mathbf{K}$ $\cong$ $\mathbf{F}[x]/(f)$
-
The following Proposition was stated and illustrated
-
Proposition. (Milne, Prop.2.4)
For every polynomial $f \in \mathbf{F}[x]$, there exists a field extension $\mathbf{F} \subset \mathbf{K} $ with the property that
-
$f$, as a polynomial in $\mathbf{K}[x]$, decomposes as $f(x)$ $=$ $c(x-\alpha_1)$ $\cdots$ $(x-\alpha_m)$, with $\alpha_i \in \mathbf{K}$, $c \in \mathbf{K};$
-
$\mathbf{F}$ $(\alpha_1$, $\cdots$, $\alpha_m)$ $=$ $\mathbf{K}$.
In addition,
-
the field $\mathbf{K}$ is unique up to $\mathbf{F}$-isomorphism;
-
If $\deg(f)=n$, then $[\mathbf{K}:\mathbf{F}]\le n!$.
-
By definition, $\mathbf{K}$ is a
splitting field of $f$ over $\mathbf{F}$.
Note that it depends both on $f$ and on $\mathbf{F}$.
-
Examples: Denote by $\mathbf{F}_f$ a spiltting field of $f$ over $\mathbf{F}$.
$f=X^2-2$, $\mathbf{Q}_f=\mathbf{Q}(\sqrt 2)$;
$f=X^2-2$, $\mathbf{R}_f=\mathbf{R}$;
$f=X^2+1$, $\mathbf{Q}_f=\mathbf{Q}(i)$;
$f=X^2+1$, $\mathbf{R}_f=\mathbf{R}(i)=\mathbf{C}$;
$f=X^3-1$, $\mathbf{Q}_f=\mathbf{Q}(\omega)$, where $\omega=e^{i2\pi/3}$;
$f=X^3-1$, $\mathbf{R}_f=\mathbf{R}(\omega)=\mathbf{C}$;
$f=X^3-2$, $\mathbf{Q}_f=\mathbf{Q}(\root{3} \of {2},\omega)$.
-
Excercise.
Consider the real number $\alpha=\sqrt 2+ \root{3} \of {2}$.
Determine the minimal polynomial of $\alpha$ in $\mathbf{Q}[x]$.
-
You can download a few more examples from here.
Wednesday, May 23, 2018
(also download from here)
-
$\mathbf{F}$ field, $\mathbf{F} \subset \mathbf{E}$ finite extension, $\mathbf{F} \subset \mathbf{L}$ arbitrary extension.
(Hom)$_\mathbf{F}(E,L)$ $=$ $\{\phi\colon\mathbf{E}$ $\to$ $\mathbf{L},$ field homomorphisms such that $\phi_{|\mathbf{F}}:$ $=$ $id_{|\mathbf{F}}\}$
-
Goal:estimate the cardinality of (Hom)$_\mathbf{F}(E,L)$.
Started from special case $\mathbf{E}=\mathbf{F}(\alpha)$, where $\alpha\in\mathbf{E}$, with minimal polynomial $f\in \mathbf{F}[x]$. In this case, an $\mathbf{F}$-homomorphism $\phi$ is completely determined by $\phi(\alpha)$.
-
Lemma. (Milne, Prop.2.1) (Hom)$_\mathbf{F}(\mathbf{F}(\alpha),\mathbf{L})$ is in 1-1 correspondence with the set
$\mathbf{Z}(f)$ $\cap$ $\mathbf{L}$ $=$ $\{z\in$ $\mathbf{L} ~|~ f(z)$ $ = 0\}$. The correspondence is given by $\phi \mapsto \phi(\alpha)$.
-
Corollary. #(Hom) $_\mathbf{F}(\mathbf{F}(\alpha)$, $\mathbf{L}) \le \deg(f)$.
-
In general (Milne, Prop.2.7)
-
Proposition.
#(Hom)$_\mathbf{F}(\mathbf{E}$, $\mathbf{L}) \le$ $[\mathbf{E}:\mathbf{F}]$.
-
Example.
$\mathbf{F}=\mathbf{Q}$, $\alpha=\sqrt 2$, $\mathbf{L}=\mathbf{R}$.
Then #(Hom)$_\mathbf{Q}(\mathbf{Q}(\sqrt 2),\mathbf{R})=2$.
There are 2 possibilities: $\phi(\sqrt 2)=\pm \sqrt 2$.
-
Example.
$\mathbf{F}$ $=$ $\mathbf{Q}$,$\alpha$ $=$ $\root{3}\of{2}$, $\mathbf{L}=\mathbf{R}$.
Then #(Hom)$_\mathbf{Q}(\mathbf{Q}$$(\root{3}\of{2})$,$\mathbf{R}) = 1$.
There is only 1 possibility: $\phi(\root{3}\of{2})$ $=$ $\root{3}\of{2}$.
-
Example.
$\mathbf{F}=\mathbf{Q}$, $\alpha=\root{3}\of{2}$, $\mathbf{L}=\mathbf{C}$.
Then #(Hom)$_\mathbf{Q}$ $(\mathbf{Q}(\root{3}\of{2})$, $\mathbf{C})$ $=3$.
There are 3 possibilities: $\phi(\root{3}\of{2})$ $=$ $\root{3}\of{2}$, $\root{3}\of{2} \omega$, $\root{3}\of{2} \omega^2$, where $\omega=e^{2\pi i/3}$.
-
You can download a few more examples from here.
Wednesday, May 23, 2018
(also download from here)
-
Concluded the proof of Proposition 2.7, in Milne:
Proposition 2.7(b)
Let $\mathbf{F}$ be a field, let $f\in\mathbf{F}[x]$ be a polynomial. If $\mathbf{K}$ and $\mathbf{K}'$ are splitting fields of $f$ over $\mathbf{F}$, then there exists a field $\mathbf{F}$-isomorphism $\phi\colon \mathbf{K}\to\mathbf{K}'$.
-
Definition.
Let $\mathbf{F}$ be a field. A polynomial $f\in \mathbf{F}[x]$ is called separable if in a splitting field of $f$ the zeroes of $f$ are distinct.
-
Examples:
-
$f(x)$ $=$ $x(x-1)$ $\in$ $\Q[x]$ is separable;
-
$f(x)=$ $(x-1)^2$ $\in\Q[x]$ is not separable;
-
$f(x)=$ $x^2+1$ $\in \mathbf{R}[x]$ is separable: the splitting field of $f$ is $\mathbf{R}_f=\mathbf{C}$ and there $f$ has distinct zeros $\pm i$.
-
$f(x)=$ $x^2+1=$ $(x+1)^2$ $\in \mathbf{Z}/$ $2\mathbf{Z}[x]$ is not separable.
-
Definition.
Let $\mathbf{F}$ be a field. The derivative of a polynomial $f(x)=$ $\sum_{n=0}^d$ $a_nx^n$ in $ \mathbf{F}[x]$ is defined as follows
$f'(x)=$ $\sum_{n=1}^d$ $na_nx^{n-1}$
(here $n=$ $1+\ldots$ $+1$, where $1\in\mathbf{F}$ and $nx=x+$ $\ldots +x$).
-
Excercise. The derivative defined above is linear and satisfies the Leibnitz rule.
-
Proposition.
(Prop.2.13, Milne) Let $\mathbf{F}$ be a field. A polynomial $f\in \mathbf{F}[x]$ is separable if and only if $\gcd(f,f')=1$.
-
You can download a few more examples from here.
Tuesday, 29 May, 2018
(also download from here)
-
$\mathbf{F} \subset \mathbf{E}$ finite field extension; $\Aut_\mathbf{F}(\mathbf{E})$ the group of $\mathbf{F}$-field homomorphisms.
-
Let $G$ be a subgroup of $\Aut_\mathbf{F}(\mathbf{E})$. Denote by $\mathbf{E}^G=$ $\{$
$x\in \mathbf{E}$ $\vert$ $phi(x)=x$, $\forall \phi\in G$ $\}$ the subset of invariant elements. Then $\mathbf{E}^G$ is a subfield of $E$ (Exercise).
-
The next two theorems estimate the cardinality of $\Aut_\mathbf{F}(\mathbf{E})$ both from above and from below.
-
Theorem 1. (Milne, Thm.3.2)
-
$\mathbf{F}\subset \mathbf{E}$ finite field extension. Then $\#\Aut_\mathbf{F}(\mathbf{E}) $ $\le $ $[\mathbf{E}:\mathbf{F}]$;
-
If $\mathbf{E}=\mathbf{F}_f$ is the splitting field of a separable polynomial $f\in \mathbf{F}[x]$, then $\#\Aut_\mathbf{F}(\mathbf{E}) $ $= $ $[\mathbf{E}:\mathbf{F}]$
-
Theorem 2. (Artin's Lemma) (Milne, Thm.3.4) Let $\mathbf{E}$ be a field, and let $G$ be a finite subgroup of $\Aut(\mathbf{E})$. Then $\#G\ge $ $[\mathbf{E}:\mathbf{E}^G]$.
-
You can download a few more examples from here.
Thursday, 31 May, 2018
(also download from here)
Note:
There was a lecture before this lecture, in which, we mainly solve the students' problems. Hence, concerning lecture counter, lecture-7 means lecture-8.
-
Corollary. (Milne, Cor.3.5) $\mathbf{E}$ field. For any finite group $G\subset$ $\Aut(\mathbf{E})$, one has $G=$ $\Aut_{\mathbf{E}^G}(\mathbf{E})$.
In particular, if $\mathbf{F} \subset \mathbf{E}$ is a finite degree extension, then
$[\mathbf{E}:\mathbf{E}^G]$ $=\# G.$
Let $\mathbf{F}\subset \mathbf{E}$ be an algebraic extension.
-
Definition. $\mathbf{F}\subset \mathbf{E}$ is called separable if the minimum polynomial over $\mathbf{F}$ of every element in $\mathbf{E}$ is separable.
-
Definition. $\mathbf{F}\subset \mathbf{E}$ is called normal if the minimum polynomial over $\mathbf{F}$ of every element in $\mathbf{E}$ splits in $\mathbf{E}[x]$.
In particular, an algebraic extension $\mathbf{F}\subset \mathbf{E}$ is both separable and normal if the minimum polynomial $f$ over $\mathbf{F}$ of every element in $\mathbf{E}$ splits in $\mathbf{E}[x]$ as $f(x)=$ $c(x-\alpha_1)$ $\ldots$ $(x-\alpha_n)$, with $c,\alpha_i\in$ $\mathbf{E}$ and $\alpha_i\not=\alpha_j$, for $i\not=j$.
-
Theorem. (Milne, thm.3.10) Let $\mathbf{F} \subset \mathbf{E}$ be an extension. Then the following four statements are equivalent:
-
$\mathbf{F}$ is the invariant subfield of $\Aut_\mathbf{F}(\mathbf{E})$;
-
$\mathbf{F}=\mathbf{E}^G$, for some finite subgroup $G\subset$ $\Aut(\mathbf{E})$;
-
$\mathbf{E}$ is a finite degree separable and normal extension of $\mathbf{F}$;
-
$\mathbf{E}$ is the splitting field of a separable polynomial in $\mathbf{F}[x]$.
-
Definition. If an extension $\mathbf{F}\subset \mathbf{E}$ satisfies any of the above statements, then ot is called a Galois extension and $G:=$ $\Aut_\mathbf{F}(\mathbf{E})$ is its Galois group.
-
Example. (see Milne, Example 3.21) $\mathbf{Q} \subset$ $\mathbf{Q}(\zeta_7)$, where $\zeta_7$ is a primitive $7^{th}$ root of 1.
-
You can download a few more examples from here.